Skip to main content

genomics

Researchers Elucidate Role of Stress Gene in Chronic Pain

Posted on by

Credit: Getty Images/simonkr

For most people, pain eventually fades away as an injury heals. But for others, the pain persists beyond the initial healing and becomes chronic, hanging on for weeks, months, or even years. Now, we may have uncovered an answer to help explain why: subtle differences in a gene that controls how the body responds to stress.

In a recent study of more than 1,600 people injured in traffic accidents, researchers discovered that individuals with a certain variant in a stress-controlling gene, called FKBP5, were more likely to develop chronic pain than those with other variants [1]. These findings may point to new non-addictive strategies for preventing or controlling chronic pain, and underscore the importance of NIH-funded research for tackling our nation’s opioid overuse crisis.


Meeting with Congressman Ro Khanna

Posted on by

Larry Tabak, Congressman Ro Khanna and Francis Collins at the NIH Clinical Center

We had a great visit with Congressman Ro Khanna (center) of California. Our discussion included recent advances in neuroscience, genomics, Big Data, and research on food allergies. NIH Deputy Director Larry Tabak (left) and I welcomed Congressman Khanna to the NIH Clinical Center on July 30, 2018.


Study Shows Genes Unique to Humans Tied to Bigger Brains

Posted on by

cortical organoid

Caption: Cortical organoid, showing radial glial stem cells (green) and cortical neurons (red).
Credit: Sofie Salama, University of California, Santa Cruz

In seeking the biological answer to the question of what it means to be human, the brain’s cerebral cortex is a good place to start. This densely folded, outer layer of grey matter, which is vastly larger in Homo sapiens than in other primates, plays an essential role in human consciousness, language, and reasoning.

Now, an NIH-funded team has pinpointed a key set of genes—found only in humans—that may help explain why our species possesses such a large cerebral cortex. Experimental evidence shows these genes prolong the development of stem cells that generate neurons in the cerebral cortex, which in turn enables the human brain to produce more mature cortical neurons and, thus, build a bigger cerebral cortex than our fellow primates.

That sounds like a great advantage for humans! But there’s a downside. Researchers found the same genomic changes that facilitated the expansion of the human cortex may also render our species more susceptible to certain rare neurodevelopmental disorders.


Tracing Spread of Zika Virus in the Americas

Posted on by

Francis Collins visits Ziika Forest

Caption: Here I am visiting the Ziika Forest area of Uganda, where the Zika virus was first identified in 1947.
Credit: National Institutes of Health

A couple of summers ago, the threat of mosquito-borne Zika virus disease in tropical areas of the Americas caused major concern, and altered the travel plans of many. The concern was driven by reports of Zika-infected women giving birth to babies with small heads and incompletely developed brains (microcephaly), as well as other serious birth defects. So, with another summer vacation season now upon us, you might wonder what’s become of Zika.

While pregnant women and couples planning on having kids should still take extra precautions [1] when travelling outside the country, the near-term risk of disease outbreaks has largely subsided because so many folks living in affected areas have already been exposed to the virus and developed protective immunity. But the Zika virus—first identified in the Ziika Forest in Uganda in 1947—has by no means been eliminated, making it crucial to learn more about how it spreads to avert future outbreaks. It’s very likely we have not heard the last of Zika in the Western hemisphere.

Recently, an international research team, partly funded by NIH, used genomic tools to trace the spread of the Zika virus. Genomic analysis can be used to build a “family tree” of viral isolates, and such analysis suggests that the first Zika cases in Central America were reported about a year after the virus had actually arrived and begun to spread.

The Zika virus, having circulated for decades in Africa and Asia before sparking a major outbreak in French Polynesia in 2013, slipped undetected across the Pacific Ocean into Brazil early in 2014, as established in previous studies. The new work reveals that by that summer, the bug had already hopped unnoticed to Honduras, spreading rapidly to other Central American nations and Mexico—likely by late 2014 and into 2015 [2].


Are Some Tumors Just ‘Born to Be Bad’?

Posted on by

Human Colon Cancer Cells

Caption: Human colon cancer cells.
Credit: National Cancer Institute, NIH

Thanks to improvements in screening technologies and public health outreach, more cancers are being detected early. While that’s life-saving news for many people, it does raise some important questions about the management of small, early-stage tumors. Do some tumors take a long time to smolder in their original location before they spread, or metastasize, while others track to new, distant, and dangerous sites early in their course? Or, as the authors of a new NIH-funded study put it, are certain tumors just “born to be bad”?

To get some answers, these researchers recently used genomic data from 19 human colorectal tumors (malignant and benign) to model tumor development over time [1]. Their computer simulations showed that malignant tumors displayed distinctive spatial patterns of genetic mutations associated with early cell mobility. Cell mobility is a prerequisite for malignancy, and it indicates an elevated risk of tumors invading the surrounding tissue and spreading to other parts of the body. What’s more, the team’s experimental work uncovered evidence of early abnormal cell movement in more than half of the invasive tumors.

Much more remains to be done to validate these findings and extend them to other types of cancer. But the study suggests that spatial mutation patterns may someday prove useful in helping decide whether to pursue aggressive treatment for early-stage cancer or opt for careful monitoring instead.


Next Page