Skip to main content

genomics

Human Colon Cancer Cells

Caption: Human colon cancer cells.
Credit: National Cancer Institute, NIH

Thanks to improvements in screening technologies and public health outreach, more cancers are being detected early. While that’s life-saving news for many people, it does raise some important questions about the management of small, early-stage tumors. Do some tumors take a long time to smolder in their original location before they spread, or metastasize, while others track to new, distant, and dangerous sites early in their course? Or, as the authors of a new NIH-funded study put it, are certain tumors just “born to be bad”?

To get some answers, these researchers recently used genomic data from 19 human colorectal tumors (malignant and benign) to model tumor development over time [1]. Their computer simulations showed that malignant tumors displayed distinctive spatial patterns of genetic mutations associated with early cell mobility. Cell mobility is a prerequisite for malignancy, and it indicates an elevated risk of tumors invading the surrounding tissue and spreading to other parts of the body. What’s more, the team’s experimental work uncovered evidence of early abnormal cell movement in more than half of the invasive tumors.

Much more remains to be done to validate these findings and extend them to other types of cancer. But the study suggests that spatial mutation patterns may someday prove useful in helping decide whether to pursue aggressive treatment for early-stage cancer or opt for careful monitoring instead.

(more…)

Posted In: News

Tags: , , , , , , , , , , , , , , , ,

2 Comments

Posted In: Director's Album - Videos

Tags: , ,

Leave a Comment

Red blood cell infected with malaria-causing parasites

Caption: Colorized scanning electron micrograph of a blood cell infected with malaria parasites (blue with dots) surrounded by uninfected cells (red).
Credit: National Institute of Allergy and Infectious Diseases, NIH

As a volunteer physician in a small hospital in Nigeria 30 years ago, I was bitten by lots of mosquitoes and soon came down with headache, chills, fever, and muscle aches. It was malaria. Fortunately, the drug available to me then was effective, but I was pretty sick for a few days. Since that time, malarial drug resistance has become steadily more widespread. In fact, the treatment that cured me would be of little use today. Combination drug therapies including artemisinin have been introduced to take the place of the older drugs [1], but experts are concerned the mosquito-borne parasites that cause malaria are showing signs of drug resistance again.

So, researchers have been searching the genome of Plasmodium falciparum, the most-lethal species of the malaria parasite, for potentially better targets for drug or vaccine development. You wouldn’t think such work would be too tough because the genome of P. falciparum was sequenced more than 15 years ago [2]. Yet it’s proven to be a major challenge because the genetic blueprint of this protozoan parasite has an unusual bias towards two nucleotides (adenine and thymine), which makes it difficult to use standard research tools to study the functions of its genes.

Now, using a creative new spin on an old technique, an NIH-funded research team has solved this difficult problem and, for the first time, completely characterized the genes in the P. falciparum genome [3]. Their work identified 2,680 genes essential to P. falciparum’s growth and survival in red blood cells, where it does the most damage in humans. This gene list will serve as an important guide in the years ahead as researchers seek to identify the equivalent of a malarial Achilles heel, and use that to develop new and better ways to fight this deadly tropical disease.

(more…)

Posted In: News

Tags: , , , , , , , , , , , , , , , , , , , , , ,

2 Comments

MEMOIR cells

Caption: MEMOIR cells variably activate (cyan). The recorded information is then read out to visualize certain RNA transcripts (red).
Credit: Elowitz and Cai Labs, Caltech, Pasadena, CA

One of the most fascinating challenges in biology is understanding how a single cell divides and differentiates to form a complex, multicellular organism. Scientists can learn a lot about this process by tracking time-lapse images through a microscope. But gazing through a lens has its limitations, especially in the brain and other opaque and inaccessible tissues and organs.

With support from a 2017 NIH Director’s Transformative Research Program, a California Institute of Technology (Caltech) team now has a way around this problem. Rather than watching or digging information out of cells, the team has learned how to program cells to write their own molecular memoirs. These cells store the information right in their own genomic hard drives. Even better, that information is barcoded, allowing researchers to read it out of the cells without dissecting tissue. The programming can be performed in many different cell types, including stem or adult cells in tissues throughout the body.

(more…)

Posted In: Health, Science, technology

Tags: , , , , , , , , , , , , , ,

Family Tree

Caption: A 6,000-person family tree, showing individuals spanning seven generations (green) and their marital links (red).
Credit: Columbia University, New York City

You may have worked on constructing your family tree, perhaps listing your ancestry back to your great-grandparents. Or with so many public records now available online, you may have even uncovered enough information to discover some unexpected long-lost relatives. Or maybe you’ve even submitted a DNA sample to one of the commercial sources to see what you could learn about your ancestry. But just how big can a family tree grow using today’s genealogical tools?

A recent paper offers a truly eye-opening answer. With permission to download the publicly available, online profiles of 86 million genealogy hobbyists, most of European descent, the researchers assembled more than 5 million family trees. The largest totaled more than 13 million people! By merging each tree from the crowd-sourced and public data, including the relatively modest 6,000-person seedling shown above, the researchers were able to go back 11 generations on average to the 15th century and the days of Christopher Columbus. Doubly exciting, these large datasets offer a powerful new resource to study human health, having already provided some novel insights into our family structures, genes, and longevity.

(more…)

Posted In: Health, Science

Tags: , , , , , , , , , , , , , , , , ,

Next Page »