Skip to main content

Recent Posts

News

Revolutionizing Technology to Treat Genetic Diseases: The NIH TARGETED Challenge

Recent scientific advances in the field of genome editing, which enables precise modifications to DNA, have greatly increased the potential to treat genetic diseases. Despite revolutionary progress in this area, treatment options remain limited. Several scientific challenges remain before gene editing can be widely used in the clinic. For example, gene editing tools may cut in unintended areas in addition to the target site, and more research is necessary to understand how these errors affect patients.

Another key challenge is that many organs remain difficult to reach with gene therapies because we do not have adequate ways to deliver gene editing tools to all cells. While efficient delivery technologies exist for some targets, like liver cells, novel and specialized delivery methods designed for specific cell types and locations in the body are needed to ensure genome editing tools can reach sufficient numbers and types of somatic cells to modify DNA safely and effectively. Somatic cell gene therapies target non-reproductive cells, so the changes only affect the person who receives the gene therapy and are not passed down generation to generation.

News

Rice-Sized Device Tests Brain Tumor’s Drug Responses During Surgery

Scientists have made remarkable progress in understanding the underlying changes that make cancer grow and have applied this knowledge to develop and guide targeted treatment approaches to vastly improve outcomes for people with many cancer types. And yet treatment progress for people with brain tumors known as gliomas–including the most aggressive glioblastomas–has remained slow. One reason is that doctors lack tests that reliably predict which among many therapeutic options will work best for a given tumor.

Now an NIH-funded team has developed a miniature device with the potential to change this for the approximately 25,000 people diagnosed with brain cancers in the U.S. each year [1]. When implanted into cancerous brain tissue during surgery, the rice-sized drug-releasing device can simultaneously conduct experiments to measure a tumor’s response to more than a dozen drugs or drug combinations. What’s more, a small clinical trial reported in Science Translational Medicine offers the first evidence in people with gliomas that these devices can safely offer unprecedented insight into tumor-specific drug responses

News

New Approach to ‘Liquid Biopsy’ Relies on Repetitive RNA in the Bloodstream

It’s always best to diagnose cancer at an early stage when treatment is most likely to succeed. Unfortunately, far too many cancers are still detected only after cancer cells have escaped from a primary tumor and spread to distant parts of the body. This explains why there’s been so much effort in recent years to develop liquid biopsies, which are tests that can pick up on circulating cancer cells or molecular signs of cancer in blood or other bodily fluids and reliably trace them back to the organ in which a potentially life-threatening tumor is growing.