Skip to main content

genetics

Modeling Hypertrophic Cardiomyopathy in a Dish

Posted on by

Image of cardiac fibers

Credit: Zhen Ma, University of California, Berkeley

Researchers have learned in recent years how to grow miniature human hearts in a dish. These “organoids” beat like the real thing and have allowed researchers to model many key aspects of how the heart works. What’s been really tough to model in a dish is how stresses on hearts that are genetically abnormal, such as in inherited familial cardiomyopathies, put people at greater risk for cardiac problems.

Enter the lab-grown human cardiac tissue pictured above. This healthy tissue comprised of the heart’s muscle cells, or cardiomyocytes (green, nuclei in red), was derived from induced pluripotent stem (iPS) cells. These cells are derived from adult skin or blood cells that are genetically reprogrammed to have the potential to develop into many different types of cells, including cardiomyocytes.


American Society of Human Genetics

Posted on by

Francis Collins standing in a crosswalk

I had a great time attending the American Association of Human Genetics (ASHG) 2018 annual meeting in San Diego. The meeting was held from October 15-20. At one of the ASHG receptions, I also had a chance to get on stage and perform with my band Ethidium Spill. Credit: Jen Carroll


All of Us Needs All of You

Posted on by

I’ve got some exciting news to share with you: as of May 6, 2018, NIH’s All of Us Research Program is open to everyone living in the United States, age 18 and older. That means that you, along with your family and friends, can join with 1 million or more Americans from all walks of life to create an unprecedented research resource that will speed biomedical breakthroughs and transform medicine.

To launch this historic undertaking, All of Us yesterday held community events at seven sites across the nation, from Alabama to Washington state. I took part in an inspiring gathering at the Abyssinian Baptist Church in New York’s Harlem neighborhood, where I listened to community members talk about how important it is for everyone to be able to take part in this research. I shared information on how All of Us will help researchers devise new ways of improving the health of everyone in this great nation.


Crowdsourcing 600 Years of Human History

Posted on by

Family Tree

Caption: A 6,000-person family tree, showing individuals spanning seven generations (green) and their marital links (red).
Credit: Columbia University, New York City

You may have worked on constructing your family tree, perhaps listing your ancestry back to your great-grandparents. Or with so many public records now available online, you may have even uncovered enough information to discover some unexpected long-lost relatives. Or maybe you’ve even submitted a DNA sample to one of the commercial sources to see what you could learn about your ancestry. But just how big can a family tree grow using today’s genealogical tools?

A recent paper offers a truly eye-opening answer. With permission to download the publicly available, online profiles of 86 million genealogy hobbyists, most of European descent, the researchers assembled more than 5 million family trees. The largest totaled more than 13 million people! By merging each tree from the crowd-sourced and public data, including the relatively modest 6,000-person seedling shown above, the researchers were able to go back 11 generations on average to the 15th century and the days of Christopher Columbus. Doubly exciting, these large datasets offer a powerful new resource to study human health, having already provided some novel insights into our family structures, genes, and longevity.


NIH Family Members Giving Back: Charlotte Phillips

Posted on by

Charlote Phillips and members of a Mennonite community

Caption: Charlotte Phillips during a visit to a Missouri Mennonite community.
Credit: Richard Hillman

At 1 a.m., most people are fast asleep in their beds. But Charlotte Phillips sometimes finds herself up at that odd hour, waiting anxiously in a deserted Missouri parking lot far from her home. Phillips drives there to meet a contact for a very special delivery: a packet of cheek swabs and blood samples from a newborn Mennonite baby at risk of a life-threatening genetic condition called maple syrup urine disease (MSUD).

For more than two decades, Phillips, an NIH grantee at the University of Missouri, Columbia, has volunteered to ensure that the DNA in these swabs and samples is tested for MSUD within hours of a baby’s birth. If found to be positive for the condition, the baby can receive a needed special formula. Without it, the baby would suffer brain damage within days from its inability to break down amino acids in protein-rich foods, including breast milk and standard infant formula. Hurrying off at a moment’s notice isn’t always convenient, but Phillips, who is not Mennonite, feels a personal calling to do it. She wouldn’t want any babies to die.


Next Page