Skip to main content

Alzheimer’s disease

A New Piece of the Alzheimer’s Puzzle

Posted on by

A couple enjoying a hot drink

Credit: National Institute on Aging, NIH

For the past few decades, researchers have been busy uncovering genetic variants associated with an increased risk of Alzheimer’s disease (AD) [1]. But there’s still a lot to learn about the many biological mechanisms that underlie this devastating neurological condition that affects as many as 5 million Americans [2].

As an example, an NIH-funded research team recently found that AD susceptibility may hinge not only upon which gene variants are present in a person’s DNA, but also how RNA messages encoded by the affected genes are altered to produce proteins [3]. After studying brain tissue from more than 450 deceased older people, the researchers found that samples from those with AD contained many more unusual RNA messages than those without AD.


Talking about Alzheimer’s Issues with CBS’s Jon LaPook

Posted on by

Francis Collins meeting with Jonathan LaPook

Enjoyed my one-on-one exchange with Dr. Jonathan LaPook, CBS Evening News medical correspondent. We talked during the Alzheimer’s Impact Movement (AIM) Advocacy Forum on June 18, 2018 in Washington, D.C. The event was sponsored by the Alzheimer’s Association. Credit: Alzheimer’s Association


Snapshots of Life: The Birth of New Neurons

Posted on by

Radial Glia in Oil

Credit: Kira Mosher, University of California, Berkeley

After a challenging day at work or school, sometimes it may seem like you are down to your last brain cell. But have no fear—in actuality, the brains of humans and other mammals have the potential to produce new neurons throughout life. This remarkable ability is due to a specific type of cell—adult neural stem cells—so beautifully highlighted in this award-winning micrograph.

Here you see the nuclei (purple) and arm-like extensions (green) of neural stem cells, along with nuclei of other cells (blue), in brain tissue from a mature mouse. The sample was taken from the subgranular zone of the hippocampus, a region of the brain associated with learning and memory. This zone is also one of the few areas in the adult brain where stem cells are known to reside.


Snapshots of Life: Growing Mini-Brains in a Dish

Posted on by

Brain grown in a lab dish

Credit: Collin Edington and Iris Lee, Department of Biomedical Engineering, MIT

Something pretty incredible happens—both visually and scientifically—when researchers spread neural stem cells onto a gel-like matrix in a lab dish and wait to see what happens. Gradually, the cells differentiate and self-assemble to form cohesive organoids that resemble miniature brains!

In this image of a mini-brain organoid, the center consists of a clump of neuronal bodies (magenta), surrounded by an intricate network of branching extensions (green) through which these cells relay information. Scattered throughout the mini-brain are star-shaped astrocytes (red) that serve as support cells.


Creative Minds: Using Machine Learning to Understand Genome Function

Posted on by

Anshul Kundaje

Anshul Kundaje / Credit: Nalini Kartha

Science has always fascinated Anshul Kundaje, whether it was biology, physics, or chemistry. When he left his home country of India to pursue graduate studies in electrical engineering at Columbia University, New York, his plan was to focus on telecommunications and computer networks. But a course in computational genomics during his first semester showed him he could follow his interest in computing without giving up his love for biology.

Now an assistant professor of genetics and computer science at Stanford University, Palo Alto, CA, Kundaje has received a 2016 NIH Director’s New Innovator Award to explore not just how the human genome sequence encodes function, but also why it functions in the way that it does. Kundaje even envisions a time when it might be possible to use sophisticated computational approaches to predict the genomic basis of many human diseases.


Next Page