Skip to main content

brain

A Scientist and Conservation Photographer

Posted on by

These stunning images of animals were taken by Susan McConnell, whose photographs have appeared in Smithsonian Magazine, National Geographic, Nature’s Best Photography, Africa Geographic, and a number of other publications. But photography is just part of her professional life. McConnell is best known as a developmental neurobiologist at Stanford University, Palo Alto, CA, and an elected member of the U.S. National Academy of Sciences.

How did McConnell find the time while tracing the development of the brain’s biocircuitry to launch a second career as a nature photographer? Her answer: Every research career has its seasons. When McConnell launched her lab in 1989 at the age of 31, she was up to her eyeballs recruiting staff, writing research grants, and pursuing many different leads in her quest to understand how neurons in the brain’s cerebral cortex are produced, differentiated, and then wired together into functional circuits.


Study Associates Frequent Digital Media Use in Teens with ADHD Symptoms

Posted on by

Teens using smart phones

Credit: Thinkstock/monkeybusinessimages

The rise of smart phones, tablets, and other mobile technologies has put digital media, quite literally, at the fingertips of today’s youth. Most teens now have ready access to a smartphone, with about half spending the majority of their waking hours texting, checking social media sites, watching videos, or otherwise engaged online [1].

So, what does this increased access to digital media—along with the instant gratification that it provides—mean for teens’ health and wellbeing? In a two-year study of more than 2,500 high school students in Los Angeles, NIH-funded researchers found that those who consumed the most digital media were also the most likely to develop symptoms of attention-deficit/hyperactivity disorder (ADHD) [2].


How the Brain Regulates Vocal Pitch

Posted on by

Credit: University of California, San Francisco

Whether it’s hitting a high note, delivering a punch line, or reading a bedtime story, the pitch of our voices is a vital part of human communication. Now, as part of their ongoing quest to produce a dynamic picture of neural function in real time, researchers funded by the NIH’s Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative have identified the part of the brain that controls vocal pitch [1].

This improved understanding of how the human brain regulates the pitch of sounds emanating from the voice box, or larynx, is more than cool neuroscience. It could aid in the development of new, more natural-sounding technologies to assist people who have speech disorders or who’ve had their larynxes removed due to injury or disease.


Brain in Motion

Posted on by

Credit: Itamar Terem, Stanford University, Palo Alto, CA, and Samantha Holdsworth, University of Auckland, New Zealand

Though our thoughts can wander one moment and race rapidly forward the next, the brain itself is often considered to be motionless inside the skull. But that’s actually not correct. When the heart beats, the pumping force reverberates throughout the body and gently pulsates the brain. What’s been tricky is capturing these pulsations with existing brain imaging technologies.

Recently, NIH-funded researchers developed a video-based approach to magnetic resonance imaging (MRI) that can record these subtle movements [1]. Their method, called phase-based amplified MRI (aMRI), magnifies those tiny movements, making them more visible and quantifiable. The latest aMRI method, developed by a team including Itamar Terem at Stanford University, Palo Alto, CA, and Mehmet Kurt at Stevens Institute of Technology, Hoboken, NJ. It builds upon an earlier method developed by Samantha Holdsworth at New Zealand’s University of Auckland and Stanford’s Mahdi Salmani Rahimi [2].


Measuring Brain Chemistry

Posted on by

Anne Andrews

Anne Andrews
Credit: From the American Chemical Society’s “Personal Stories of Discovery”

Serotonin is one of the chemical messengers that nerve cells in the brain use to communicate. Modifying serotonin levels is one way that antidepressant and anti-anxiety medications are thought to work and help people feel better. But the precise nature of serotonin’s role in the brain is largely unknown.

That’s why Anne Andrews set out in the mid-1990s as a fellow at NIH’s National Institute of Mental Health to explore changes in serotonin levels in the brains of anxious mice. But she quickly realized it wasn’t possible. The tools available for measuring serotonin—and most other neurochemicals in the brain—couldn’t offer the needed precision to conduct her studies.

Instead of giving up, Andrews did something about it. In the late 1990s, she began formulating an idea for a neural probe to make direct and precise measurements of brain chemistry. Her progress was initially slow, partly because the probe she envisioned was technologically ahead of its time. Now at the University of California, Los Angeles (UCLA) more than 15 years later, she’s nearly there. Buoyed by recent scientific breakthroughs, the right team to get the job done, and the support of a 2017 NIH Director’s Transformative Research Award, Andrews expects to have the first fully functional devices ready within the next two years.


Next Page