Antibody Makes Alzheimer’s Protein Detectable in Blood

Antibodies to Tau

Caption: The protein tau (green) aggregates abnormally in a brain cell (blue). Tau spills out of the cell and enters the bloodstream (red). Research shows that antibodies (blue) can capture tau in the blood that reflect its levels in the  brain.
Credit: Sara Moser

Age can bring moments of forgetfulness. It can also bring concern that the forgetfulness might be a sign of early Alzheimer’s disease. For those who decide to have it checked out, doctors are likely to administer brief memory exams to assess the situation, and medical tests to search for causes of memory loss. Brain imaging and spinal taps can also help to look for signs of the disease. But an absolutely definitive diagnosis of Alzheimer’s disease is only possible today by examining a person’s brain postmortem. A need exists for a simple, less-invasive test to diagnose Alzheimer’s disease and similar neurodegenerative conditions in living people, perhaps even before memory loss becomes obvious.

One answer may lie in a protein called tau, which accumulates in abnormal tangles in the brains of people with Alzheimer’s disease and other “tauopathy” disorders. In recent years, researchers have been busy designing an antibody to target tau in hopes that this immunotherapy approach might slow or even reverse Alzheimer’s devastating symptoms, with promising early results in mice [1, 2]. Now, an NIH-funded research team that developed one such antibody have found it might also open the door to a simple blood test [3].

Continue reading

Inside Alzheimer’s

Photo of a cross section of a human brain with the left slide healthy and the right side with severe AD

Source: Medline Plus

The brain shrinks as we age—it’s normal. But in Alzheimer’s disease, neurons die-off in the billions, causing the brain to shrink more rapidly. Initially the disease wipes out neurons in brain structures that create and store memories. The disease then destroys regions responsible for language and behavior. As the rest of the brain breaks down, Alzheimer’s patients lose touch with the world and the people around them.

The NIH is testing therapies to treat, delay, and ultimately prevent Alzheimer’s disease.

For more information:

A Brain Pacemaker for Alzheimer’s Disease?

As many of you know, Alzheimer’s is an absolutely devastating neurodegenerative disease. It destroys the lives of loved ones with the disease, takes a terrible toll on family and friends who care for them, and costs, for patient care alone, an estimated $200 billion a year.

Illustration of a device implanted near the heart and a wire that leads to the brain.

The implanted wires stimulate the fornix, one of the first regions destroyed by Alzheimer’s. Credit: Functional Neuromodulation

Alzheimer’s is the most common form of dementia, robbing those it affects of their memory, their ability to learn and think, and their personality. It worsens over time. People forget recent events, and gradually lose the ability to manage their daily lives and care for themselves. It currently affects an estimated 5.1 million Americans; this number is expected to rise to somewhere between 11 and 16 million by 2050 unless treatments can be found in the meantime.

There’s no cure for Alzheimer’s disease (AD), but biomedical researchers are testing new drugs and biochemical approaches, treatments that could stem and possibly reverse the course of the disease. They are also exploring how conditions like obesity and diabetes—which are at epidemic levels in the U.S. and worldwide—play a role. I want to tell you about a new NIH-funded experimental approach that was tried for the first time in the U.S. in November.

Neurosurgeons at Johns Hopkins Hospital, in Baltimore, MD, implanted a ‘pacemaker’ in the brain of a patient with mild AD. You are probably familiar with the concept of a pacemaker that stabilizes heart rhythms. The implanted device sends electrical pulses to the heart muscle, resetting a normal heartbeat. In some ways, this pacemaker for AD is similar. It, too, sends electrical pulses, but targets a region of the brain called the fornix—a bundle of 1.2 million axons that normally serves as a superhighway for learning, emotion, and forming memories. The fornix is one of the first regions to be destroyed by Alzheimer’s.

Continue reading