How Can You Take Part in Clinical Research? Looking Beyond “First in Human”


For a remarkable journey through the front lines of clinical research, I’d like to invite you to join me in viewing First in Human, which premieres tonight at 9 p.m. ET on the Discovery Channel. This three-part docuseries, to be aired August 10, 17, and 24, provides an unprecedented look inside the NIH Clinical Center here in Bethesda, MD, following four of the many brave patients who’ve volunteered to take part in the clinical trials that are so essential to medical breakthroughs.

You’ll learn about what it’s like to take part in an experimental trial of a new treatment, when all standard options have failed. You’ll see that the NIH Clinical Center and its staff are simply amazing. But keep in mind that you don’t have to travel all the way to Bethesda to be part of outstanding, NIH-funded clinical research. In fact, we support clinical trials all across the country, and it’s often possible to find one at a medical institution near your home. To search for a clinical trial that might be right for you or a loved one with a serious medical problem, try going to ClinicalTrials.gov, a web site run by NIH.

Continue reading

You’ll Want to See This! “First in Human” Debuts August 10

For over 60 years, the NIH Clinical Center—the world’s largest hospital dedicated to clinical research—has been at the forefront of developing treatments for our most deadly and damaging diseases. It’s here at our “House of Hope” in Bethesda, MD, where, among many other medical firsts, chemotherapy was first used to treat cancerous tumors, gene therapy underwent its first human tests, surgeons first successfully replaced the heart’s mitral valve, and the first anti-viral drug for HIV/AIDS met with early success.

Now, in a Discovery Channel documentary called First in Human, millions of people all around the globe will get a chance to see the doctors, nurses, and other staff of NIH’s remarkable research hospital in action. Narrated by Big Bang Theory star Jim Parsons, the three-part series debuts at 9 p.m.-11 p.m., ET, Thursday, August 10. The second and third segments will air at the same time on August 17 and 24. For a sneak peak, check out the video clip above!

Continue reading

How Kids See the World Depends a Lot on Genetics

Baby in eye gaze study

Caption: Child watches video while researchers track his eye movements.
Credit: Washington University School of Medicine, St. Louis

From the time we are born, most of us humans closely watch the world around us, paying special attention to people’s faces and expressions. Now, for the first time, an NIH-funded team has shown that the ways in which children look at faces and many other things are strongly influenced by the genes they’ve inherited from their parents.

The findings come from experiments that tracked the eye movements of toddlers watching videos of other kids or adult caregivers. The experiments showed that identical twins—who share the same genes and the same home environment—spend almost precisely the same proportion of time looking at faces, even when watching different videos. And when identical twins watched the same video, they tended to look at the same thing at almost exactly the same time! In contrast, fraternal twins—who shared the same home environment, but, on average, shared just half of their genes—had patterns of eye movement that were far less similar.

Interestingly, the researchers also found that the visual behaviors most affected in children with autism spectrum disorder (ASD)—attention to another person’s eyes and mouth—were those that also appeared to be the most heavily influenced by genetics. The discovery makes an important connection between two well-known features of ASD: a strong hereditary component and poor eye contact with other people.

Continue reading

DNA-Encoded Movie Points Way to ‘Molecular Recorder’

Original vs. CRISPR stored images

Credit: Seth Shipman, Harvard Medical School, Boston

There’s a reason why our cells store all of their genetic information as DNA. This remarkable molecule is unsurpassed for storing lots of data in an exceedingly small space. In fact, some have speculated that, if encoded in DNA, all of the data ever generated by humans could fit in a room about the size of a two-car garage and, if that room happens to be climate controlled, the data would remain intact for hundreds of thousands of years! [1]

Scientists have already explored whether synthetic DNA molecules on a chip might prove useful for archiving vast amounts of digital information. Now, an NIH-funded team of researchers is taking DNA’s information storage capabilities in another intriguing direction. They’ve devised their own code to record information not on a DNA chip, but in the DNA of living cells. Already, the team has used bacterial cells to store the data needed to outline the shape of a human hand, as well the data necessary to reproduce five frames from a famous vintage film of a horse galloping (see above).

But the researchers’ ultimate goal isn’t to make drawings or movies. They envision one day using DNA as a type of “molecular recorder” that will continuously monitor events taking place within a cell, providing potentially unprecedented looks at how cells function in both health and disease.

Continue reading

Cool Videos: A Biological Fireworks Display

Let’s kick off the Fourth of July weekend with some biological fireworks! While we’ve added a few pyrotechnic sound effects just for fun, what you see in this video is the product of some serious research. Using a specialized microscope equipped with a time-lapse camera to image fluorescence-tagged proteins in real-time, an NIH-funded team has captured a critical step in the process of cell division, or mitosis: how filaments called microtubules (red) form new branches (green) and fan out to form mitotic spindles.

In this particular experimental system, the team led by Sabine Petry at Princeton University, Princeton, NJ, studies the dynamics of microtubules in a cell-free extract of cytoplasm taken from the egg of an African clawed frog (Xenopus laevis). Petry’s ultimate goal is to learn how to build mitotic spindles, molecule by molecule, in the lab. Such an achievement would mark a major step forward in understanding the complicated mechanics of cell division, which, when disrupted, can cause cancer and many other health problems.

Continue reading