Skip to main content

Snapshots of Life

‘Tis the Season for Good Cheer

Posted on by

Whether it’s Rockefeller Center, the White House, or somewhere else across the land, ‘tis the season to gather with neighbors for a communal holiday tree-lighting ceremony. But this festive image has more do with those cups of cider in everyone’s hands than admiring the perfect Douglas fir. What looks like lights and branches are actually components of a high-resolution map from a part of the brain that controls thirst.

The map, drawn up from mouse studies, shows that when thirst arises, neurons activate a gene called c-fos (red)—lighting up the tree—indicating it’s time for a drink. In response, other neurons (green) direct additional parts of the brain to compensate by managing internal water levels. In a mouse that’s no longer thirsty, the tree would look almost all green.

This wiring map comes from a part of the brain called the hypothalamus, which is best known for its role in hunger, thirst, and energy balance. Thanks to powerful molecular tools from NIH’s Brain Research through Advancing Innovative Technologies (BRAIN) Initiative, Yuki Oka of the California Institute of Technology, Pasadena, and his team were able to draw detailed maps of the tree-shaped region, called the median preoptic nucleus (MnPO).

Using a technique called optogenetics, Oka’s team, led by Vineet Augustine, could selectively turn on genes in the MnPO [1]. By doing so, they could control a mouse’s thirst and trace the precise control pathways responsible for drinking or not.

This holiday season, as you gather with loved ones, take a moment to savor the beautiful complexity of biology and the gift of human health. Happy holidays to all of you, and peace and joy into the new year!

Reference:

[1] Hierarchical neural architecture underlying thirst regulation. Augustine V, Gokce SK, Lee S, Wang B, Davidson TJ, Reimann F, Gribble F, Deisseroth K, Lois C, Oka Y. Nature. 2018 Mar 8;555(7695):204-209. 

Links:

Oka Lab, California Institute of Technology, Pasadena

The BRAIN Initiative (NIH)

NIH Support: National Institute of Neurological Disorders and Stroke


Studying Color Vision in a Dish

Posted on by

Credit: Eldred et al., Science

Researchers can now grow miniature versions of the human retina—the light-sensitive tissue at the back of the eye—right in a lab dish. While most “retina-in-a-dish” research is focused on finding cures for potentially blinding diseases, these organoids are also providing new insights into color vision.

Our ability to view the world in all of its rich and varied colors starts with the retina’s light-absorbing cone cells. In this image of a retinal organoid, you see cone cells (blue and green). Those labelled with blue produce a visual pigment that allows us to see the color blue, while those labelled green make visual pigments that let us see green or red. The cells that are labeled with red show the highly sensitive rod cells, which aren’t involved in color vision, but are very important for detecting motion and seeing at night.


Zooming In on Meiosis

Posted on by

Meiosis

Credit: Simone Köhler, Michal Wojcik, Ke Xu, and Abby Dernburg, University of California, Berkeley

Meiosis—the formation of egg and sperm cells—is a highly choreographed process that creates genetic diversity in all plants and animals, including humans, to make each of us unique. This kaleidoscopic image shows cells from a worm exchanging DNA during meiosis.

You can see a protein-based polymer tether (green) from what’s called the synaptonemal complex. The complex holds together partner chromosomes (magenta) to facilitate DNA exchange in nuclei (white). Moving from left to right are views of the molecular assembly that progressively zoom in on the DNA, revealing in exquisite detail (far right) the two paired partner chromosomes perfectly aligned. This is not just the familiar DNA double helix. This is a double helix made up of two double helices!


The Actin Superhighway

Posted on by

Actin Superhighway

Credit: Andrew Lombardo and David Warshaw, University of Vermont, Burlington

What looks like a traffic grid filled with roundabouts is nothing of the sort: It’s actually a peek inside a tiny microchamber that models a complex system operating in many of our cells. The system is a molecular transportation network made of the protein actin, and researchers have reconstructed it in the lab to study its rules of the road and, when things go wrong, how it can lead to molecular traffic accidents.

This 3D super-resolution image shows the model’s silicone beads (circles) positioned in a tiny microfluidic-chamber. Suspended from the beads are actin filaments that form some of the main cytoskeletal roadways in our cells. Interestingly, a single dye creates the photo’s beautiful colors, which arise from the different vertical dimensions of a microscopic image: 300 nanometers below the focus (red), at focus (green), and 300 nanometers above the focus (blue). When a component spans multiple dimensions—such as the spherical beads—all the colors of the rainbow are visible. The technique is called 3D stochastic optical reconstruction microscopy, or STORM [1].


Tracking Peptides in Cell Soup

Posted on by

Lipid Morphology

Credit: William Wimley, Tulane University, New Orleans

If you think this soup looks unappealing for this year’s Thanksgiving feast, you’re right! If you were crazy enough to take a sip, you’d find it to be virtually flavorless—just a salty base (red) with greasy lipid globules (green) floating on top. But what this colorful concoction lacks in taste, it makes up for as a valuable screening tool for peptides, miniature versions of proteins that our bodies use to control many cellular processes.

In this image, William Wimley, an NIH-supported researcher at Tulane University, New Orleans, has stirred up the soup and will soon add some peptides. These peptides aren’t made by our cells, though. They’re synthesized in the lab, allowing Wimley and team to tweak their chemical structures and hopefully create ones with therapeutic potential, particularly as smart-delivery systems to target cells with greater precision and deliver biological cargoes such as drugs [1].


Next Page