Skip to main content

Snapshots of Life

Seeing Coronavirus Replicate in Kidney Cells

Posted on by

Bernbaum Imaging Post
Credit: NIAID Integrated Research Facility, Fort Detrick, MD

You’ve probably seen pictures of SARS-CoV-2—the novel coronavirus that causes COVID-19—that look alarming. But the high-resolution micrograph above paints a rather different picture, using rich pseudo-colors to show how newly assembled viral particles cause infected cells to bulge, or bleb, and then self-destruct.

This image depicts a common primate kidney cell line (green) infected with SARS-CoV-2. Notice the bulging, spherical cellular blebs, seen best in the upper right and bottom left corners. These badly damaged cells, which are filled to the point of bursting with viral particles, are beginning to self-destruct. Some cells have apparently already burst open, allowing hundreds of viral particles (purple) to spill out and potentially infect other cells.

This stunning picture was taken by John Bernbaum, an electron microscopist with NIH’s National Institute of Allergy and Infectious Diseases (NIAID). Bernbaum works at NIAID’s Integrated Research Facility (IRF), Fort Detrick, MD, a specialized, high-level biocontainment facility equipped with unique medical imaging capabilities. In this special environment, Bernbaum and his colleagues can safely visualize SARS-CoV-2, as well as other viruses and microbes that pose serious risks to human health.

To get this shot of SARS-CoV-2, Bernbaum relied on a conventional scanning electron microscope (SEM). First, a sample of kidney cells that had been exposed to SARS-CoV-2 was dehydrated, chemically preserved, and coated with a thin layer of metal. Once everything was ready, the SEM was used to focus a high-energy beam of electrons onto the sample. As electrons bounced off the metal surface, they revealed spatial variations and properties in the sample that were used to generate this 3D image.

Originally, this image was in gray scale. To better highlight the destructive powers of SARS-CoV-2, Jiro Wada, a skilled graphic illustrator at the IRF, used a computer program to colorize key features in exquisite detail. By studying these 3D images, researchers can learn about things such as the rate of infection and the prodigious number of particles each infected cell produces. They can also learn about how the infection affects the conditions inside cells.

Interestingly, what Bernbaum finds most striking about SARS-CoV-2 is what you don’t see in his images. Uninfected kidney cells look like a flat, delicately interwoven quilt (not pictured). When Bernbaum used SEM to study this sample of kidney cells, about 80 to 90 percent of the cells appeared flat and unremarkable. Yet, as the scan progressed, he came across a small subset of cells that appeared to be deformed by SARS-CoV-2 infection. Those abnormalities include the spherical bulges that I pointed out earlier, along with some worm-like protrusions that you can see in the top left.

Bernbaum has been producing amazing images like this one for 32 years—the last 11 of them at the IRF. If you’d like to see even more of his impressive work and that of the IRF team, check out the NIAID’s image gallery.

Links:

Coronavirus (NIH)

Integrated Research Facility (National Institute of Allergy and Infectious Diseases/NIH)

NIH Support: National Institute of Allergy and Infectious Diseases


3D Printing the Novel Coronavirus

Posted on by

Credit: 3D Print Exchange, NIAID, NIH

The coronavirus disease 2019 (COVID-19) pandemic has truly been an all-hands-on-deck moment for the nation. Among the responders are many with NIH affiliations, who are lending their expertise to deploy new and emerging technologies to address myriad research challenges. That’s certainly the case for the dedicated team from the National Institute of Allergy and Infectious Diseases (NIAID) at the NIH 3D Print Exchange (3DPX), Rockville, MD.

A remarkable example of the team’s work is this 3D-printed physical model of SARS-CoV-2, the novel coronavirus that causes COVID-19. This model shows the viral surface (blue) and the spike proteins studded proportionally to the right size and shape. These proteins are essential for SARS-CoV-2 to attach to human cells and infect them. Here, the spike proteins are represented in their open, active form (orange) that’s capable of attaching to a human cell, as well as in their closed, inactive form (red).

The model is about 5 inches in diameter. It takes more than 5 hours to print using an “ink” of thin layers of a gypsum plaster-based powder fused with a colored binder solution. When completed, the plaster model is coated in epoxy for strength and a glossy, ceramic-like finish. For these models, NIAID uses commercial-grade, full-color 3D printers. However, the same 3D files can be used in any type of 3D printer, including “desktop” models available on the consumer market.

Darrell Hurt and Meghan McCarthy lead the 3DPX team. Kristen Browne, Phil Cruz, and Victor Starr Kramer, the team members who helped to produce this remarkable model, created it as part of a collaboration with the imaging team at NIAID’s Rocky Mountain Laboratories (RML), Hamilton, MT.

The RML’s Electron Microscopy Unit captured the microscopic 3D images of the virus, which was cultured from one of the first COVID-19 patients in the country. The unit handed off these and other data to its in-house visual specialist to convert into a preliminary 3D model. The model was then forwarded to the 3DPX team in Maryland to colorize and optimize in preparation for 3D printing.

This model is especially unique because it’s based exclusively on SARS-CoV-2 data. For example, the model is assembled from data showing that the virus is frequently oval, not perfectly round. The spike proteins also aren’t evenly spaced, but pop up more randomly from the surface. Another nice feature of 3D printing is the models can be constantly updated to incorporate the latest structural discoveries.

That’s why 3D models are such an excellent teaching tools to share among scientists and the public. Folks can hold the plaster virus and closely examine its structure. In fact, the team recently printed out a model and delivered it to me for exactly this educational purpose.

In addition to this complete model, the researchers also are populating the online 3D print exchange with atomic-level structures of the various SARS-CoV-2 proteins that have been deposited by researchers around the world into protein and electron microscopy databanks. The number of these structures and plans currently stands at well over 100—and counting.

As impressive as this modeling work is, 3DPX has found yet another essential way to aid in the COVID-19 fight. In March, the Food and Drug Administration (FDA) announced a public-private partnership with the NIH 3D Print Exchange, Department of Veterans Affairs (VA) Innovation Ecosystem, and the non-profit America Makes, Youngstown, OH [1]. The partnership will develop a curated collection of designs for 3D-printable personal protective equipment (PPE), as well as other necessary medical devices that are in short supply due to the COVID-19 pandemic.

You can explore the partnership’s growing collection of COVID-19-related medical supplies online. And, if you happen to have a 3D printer handy, you could even try making them for yourself.

Reference:

[1] FDA Efforts to Connect Manufacturers and Health Care Entities: The FDA, Department of Veterans Affairs, National Institutes of Health, and America Makes Form a COVID-19 response Public-Private Partnership (Food and Drug Administration)

Links:

Coronavirus (COVID-19) (NIH)

NIH 3D Print Exchange (National Institute of Allergy and Infectious Diseases/NIH, Rockville, MD)

Rocky Mountain Laboratories (NIAID/NIH, Hamilton, MT)

Department of Veterans Affairs (VA) Innovation Ecosystem (Washington, D.C.)

America Makes (Youngstown, OH)

NIH Support: National Institute of Allergy and Infectious Diseases


Capturing Viral Shedding in Action

Posted on by

Credit: Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT

You’ve probably seen some amazing high-resolution images of SARS-CoV-2, the novel coronavirus that causes COVID-19, on television and the web. What you might not know is that many of these images, including the ones shown here, were produced at Rocky Mountain Laboratories (RML), a part of NIH’s National Institute of Allergy and Infectious Diseases (NIAID) that’s located in the small Montana town of Hamilton.

The head of RML’s Electron Microscopy Unit, Elizabeth Fischer, was the researcher who took this portrait of SARS-CoV-2. For more than 25 years, Fischer has snapped stunning images of dangerous viruses and microbes, including some remarkable shots of the deadly Ebola virus. She also took some of the first pictures of the coronavirus that causes Middle East respiratory syndrome (MERS), which arose from camels and continues to circulate at low levels in people.

The NIAID facility uses a variety of microscopy techniques, including state-of-the-art cryo-electron microscopy (cryo-EM). But the eye-catching image you see here was taken with a classic scanning electron microscope (SEM).

SEM enables visualization of particles, including viruses, that are too small to be seen with traditional light microscopy. It does so by focusing electrons, instead of light, into a beam that scans the surface of a sample that’s first been dehydrated, chemically preserved, and then coated with a thin layer of metal. As electrons bounce off the sample’s surface, microscopists such as Fischer are able to capture its precise topology. The result is a gray-scale micrograph like the one you see above on the left. To make the image easier to interpret, Fischer hands the originals off to RML’s Visual Medical Arts Department, which uses colorization to make key features pop like they do in the image on the right.

So, what exactly are you seeing in this image? The orange-brown folds and protrusions are part of the surface of a single cell that’s been infected with SARS-CoV-2. This particular cell comes from a commonly studied primate kidney epithelial cell line. The small, blue spheres emerging from the cell surface are SARS-CoV-2 particles.

This picture is quite literally a snapshot of viral shedding, a process in which viral particles are released from a dying cell. This image gives us a window into how devastatingly effective SARS-CoV-2 appears to be at co-opting a host’s cellular machinery: just one infected cell is capable of releasing thousands of new virus particles that can, in turn, be transmitted to others.

While capturing a fixed sample on the microscope is fairly straightforward for a pro like Fischer, developing a sample like this one involves plenty of behind-the-scenes trial and error by NIAID investigators. As you might imagine, to see the moment that viruses emerge from an infected cell, you have to get the timing just right.

By capturing many shots of the coronavirus using the arsenal of microscopes available at RML and elsewhere, researchers are learning more every day about how SARS-CoV-2 enters a cell, moves inside it, and then emerges to infect other cells. In addition to advancing scientific knowledge, Fischer notes that images like these also hold the remarkable power to make an invisible enemy visible to the world at large.

Making SARS-CoV-2 tangible helps to demystify the challenges that all of us now face as a result of the COVID-19 pandemic. The hope is it will encourage each and every one of us to do our part to fight it, whether that means digging into the research, working on the front lines, or staying at home to prevent transmission and flatten the curve. And, if you could use some additional inspiration, don’t miss the NIAID’s image gallery on Flickr, which includes some of Fischer’s finest work.

Links:

Coronavirus (COVID-19) (NIH)

Rocky Mountain Laboratories (National Institute of Allergy and Infectious Diseases/NIH)

Elizabeth Fischer (National Institute of Allergy and Infectious Diseases/NIH)

NIH Support: National Institute of Allergy and Infectious Diseases


Antibody Points to Possible Weak Spot on Novel Coronavirus

Posted on by

Credit: Meng Yuan and Nicholas Wu, Wilson Lab, The Scripps Research Institute, La Jolla, CA

Researchers are working hard to produce precise, 3D molecular maps to guide the development of safe, effective ways of combating the coronavirus disease 2019 (COVID-19) pandemic. While there’s been a lot of excitement surrounding the promise of antibody-based tests and treatments, this map you see above highlights another important use of antibodies: to inform efforts to design a vaccine.

This image shows the crystal structure of a human antibody (heavy chain in orange, light chain in yellow), which is a blood protein our immune systems produce to attack viruses and other foreign invaders. This particular antibody, called CR3022, is bound to a key surface protein of the novel coronavirus (white).

The CR3022 antibody actually doesn’t come from someone who has recovered from COVID-19. Instead, it was obtained from a person who, nearly two decades ago, survived a bout of severe acute respiratory syndrome (SARS). The SARS virus, which disappeared in 2004 after a brief outbreak in humans, is closely related to the novel coronavirus that causes COVID-19.

In a recent paper in the journal Science, the NIH-funded lab of Ian Wilson, The Scripps Research Institute, La Jolla, CA, along with colleagues at The University of Hong Kong, sought to understand how the human immune system interacts with and neutralizes this highly infectious virus [1]. The lab did so by employing high-resolution X-ray crystallography tools [2]. They captured the atomic structure of this antibody bound to its target by shooting X-rays through its crystallized form. (An antibody measures about 10 nanometers; a nanometer is 1 billionth of a meter.)

Other researchers had shown previously that CR3022 cross-reacts with the novel coronavirus, although the antibody doesn’t bind tightly enough to neutralize and stop it from infecting cells. So, Wilson’s team went to work to learn precisely where the antibody attaches to the novel virus. Those sites are of special interest because they highlight spots on a virus that are vulnerable to attack—and, as such, potentially good targets for vaccine designers.

A key finding in the new paper is that the antibody binds a highly similar site on both the SARS and novel coronaviruses. Those sites differ in each virus by just four amino acids, the building blocks of a protein.

This is particularly interesting because the antibody pictured above is bound to a spike protein, which is the appendage on both the SARS and novel coronavirus that enables them to bind to a key receptor protein on the surface of human cells, called ACE2. This binding activity marks the first step for these viruses in gaining entry into human cells and infecting them.

The human antibody shown in this image locks onto the virus’s spike protein at a different location than where the human ACE2 protein binds to the novel coronavirus. Intriguingly, the antibody binds to a spot on the novel coronavirus that is usually hidden, except for when virus shapeshifts its structure in order to infect a cell.

The findings suggest that a successful vaccine may be one that elicits antibodies that targets this same spot, but binds more tightly than the one seen above, thereby protecting human cells against the virus that causes COVID-19. However, Wilson notes that this study has just uncovered one potential vulnerability of the novel coronavirus, and it is likely the virus likely has many more that could be revealed with further study.

To continue in this quest to design a safe and effective vaccine, Wilson and his colleagues are now gathering blood samples to collect antibodies from people who’ve recovered from COVID-19. So, we can look forward to seeing some even more revealing images soon.

References:

[1] A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP, Wilson IA. Science. 2020 Apr 3.

[2] 100 Years Later: Celebrating the Contributions of X-ray Crystallography to Allergy and Clinical Immunology. Pomés A, Chruszcz M, Gustchina A, Minor W, Mueller GA, Pedersen LC, Wlodawer A, Chapman MD. J Allergy Clin Immunol. 2015 Jul;136(1):29-37.

Links:

Coronaviruses (National Institute of Allergy and Infectious Diseases/NIH)

Coronavirus (COVID-19) (NIH)

Ian Wilson (The Scripps Research Institute, La Jolla, CA)

NIH Support: National Institute of Allergy and Infectious Diseases; National Cancer Institute; National Institute of General Medical Sciences


Battling Malaria at the Atomic Level

Posted on by

Cryo-EM Image of P. falciparum Protein
Credit: Columbia University Irving Medical Center, New York

Tropical medicine has its share of wily microbes. Among the most clever is the mosquito-borne protozoan Plasmodium falciparum, which is the cause of the most common—and most lethal—form of malaria. For decades, doctors have used antimalarial drugs against P. falciparum. But just when malaria appeared to be well on its way to eradication, this parasitic protozoan mutated in ways that has enabled it to resist frontline antimalarial drugs. This resistance is a major reason that malaria, one of the world’s oldest diseases, still claims the lives of about 400,000 people each year [1].

This is a situation with which I have personal experience. Thirty years ago before traveling to Nigeria, I followed directions and took chloroquine to prevent malaria. But the resistance to the drug was already widespread, and I came down with malaria anyway. Fortunately, the parasite that a mosquito delivered to me was sensitive to another drug called Fansidar, which acts through another mechanism. I was pretty sick for a few days, but recovered without lasting consequences.

While new drugs are being developed to thwart P. falciparum, some researchers are busy developing tools to predict what mutations are likely to occur next in the parasite’s genome. And that’s what is so exciting about the image above. It presents the unprecedented, 3D atomic-resolution structure of a protein made by P. falciparum that’s been a major source of its resistance: the chloroquine-resistance transporter protein, or PfCRT.

In this cropped density map, you see part of the protein’s biochemical structure. The colorized area displays the long, winding chain of amino acids within the protein as helices in shades of green, blue and gold. These helices enclose a central cavity essential for the function of the protein, whose electrostatic properties are shown here as negative (red), positive (blue), and neutral (white). All this structural information was captured using cryo-electron microscopy (cryo-EM). The technique involves flash-freezing molecules in liquid nitrogen and bombarding them with electrons to capture their images with a special camera.

This groundbreaking work, published recently in Nature, comes from an NIH-supported multidisciplinary research team, led by David Fidock, Matthias Quick, and Filippo Mancia, Columbia University Irving Medical Center, New York [2]. It marks a major feat for structural biology, because PfCRT is on the small side for standard cryo-EM and, as Mancia discovered, the protein is almost featureless.

These two strikes made Mancia and colleagues wonder at first whether they would swing and miss at their attempt to image the protein. With the help of coauthor Anthony Kossiakoff, a researcher at the University of Chicago, the team complexed PfCRT to a bulkier antibody fragment. That doubled the size of their subject, and the fragment helped to draw out PfCRT’s hidden features. One year and a lot of hard work later, they got their homerun.

PfCRT is a transport protein embedded in the surface membrane of what passes for the gut of P. falciparum. Because the gene encoding it is highly mutable, the PfCRT protein modified its structure many years ago, enabling it to pump out and render ineffective several drugs in a major class of antimalarials called 4-aminoquinolines. That includes chloroquine.

Now, with the atomic structure in hand, researchers can map the locations of existing mutations and study how they work. This information will also allow them to model which regions of the protein to be on the lookout for the next adaptive mutations. The hope is this work will help to prolong the effectiveness of today’s antimalarial drugs.

For example, the drug piperaquine, a 4-aminoquinoline agent, is now used in combination with another antimalarial. The combination has proved quite effective. But recent reports show that P. falciparum has acquired resistance to piperaquine, driven by mutations in PfCRT that are spreading rapidly across Southeast Asia [3].

Interestingly, the researchers say they have already pinpointed single mutations that could confer piperaquine resistance to parasites from South America. They’ve also located where new mutations are likely to occur to compromise the drug’s action in Africa, where most malarial infections and deaths occur. So, this atomic structure is already being put to good use.

Researchers also hope that this model will allow drug designers to make structural adjustments to old, less effective malarial drugs and perhaps restore them to their former potency. Perhaps this could even be done by modifying chloroquine, introduced in the 1940s as the first effective antimalarial. It was used worldwide but was largely shelved a few decades later due to resistance—as I experienced three decades ago.

Malaria remains a constant health threat for millions of people living in subtropical areas of the world. Wouldn’t it be great to restore chloroquine to the status of a frontline antimalarial? The drug is inexpensive, taken orally, and safe. Through the power of science, its return is no longer out of the question.

References:

[1] World malaria report 2019. World Health Organization, December 4, 2019

[2] Structure and drug resistance of the Plasmodium falciparum transporter PfCRT. Kim J, Tan YZ, Wicht KJ, Erramilli SK, Dhingra SK, Okombo J, Vendome J, Hagenah LM, Giacometti SI, Warren AL, Nosol K, Roepe PD, Potter CS, Carragher B, Kossiakoff AA, Quick M, Fidock DA, Mancia F. Nature. 2019 Dec;576(7786):315-320.

[3] Determinants of dihydroartemisinin-piperaquine treatment failure in Plasmodium falciparum malaria in Cambodia, Thailand, and Vietnam: a prospective clinical, pharmacological, and genetic study. van der Pluijm RW, Imwong M, Chau NH, Hoa NT, et. al. Lancet Infect Dis. 2019 Sep;19(9):952-961.

Links:

Malaria (National Institute of Allergy and Infectious Diseases/NIH)

Fidock Lab (Columbia University Irving Medical Center, New York)

Video: David Fidock on antimalarial drug resistance (BioMedCentral/YouTube)

Kossiakoff Lab (University of Chicago)

Mancia Lab (Columbia University Irving Medical Center)

Matthias Quick (Columbia University Irving Medical Center)

NIH Support: National Institute of Allergy and Infectious Diseases; National Institute of General Medical Sciences; National Heart, Lung, and Blood Institute


Next Page