Feed a Virus, Starve a Bacterium?

Woman eating hot soup in bed

Thinkstock/Stockbyte

Yes, the season of colds and flu is coming. You’ve probably heard the old saying “feed a cold and starve a fever.” But is that sound advice? According to new evidence from mouse studies, there really may be a scientific basis for “feeding” diseases like colds and flu that are caused by viruses, as well as for “starving” certain fever-inducing conditions caused by bacteria.

In the latest work, an NIH-funded research team found that providing nutrition to mice infected with the influenza virus significantly improved their survival. In contrast, the exact opposite proved true in mice infected with Listeria, a fever-inducing bacterium. When researchers forced Listeria-infected mice to consume even a small amount of food, they all died.

Continue reading

Progress Toward Stem Cell Treatment for Diabetes

patient-derived pancreatic beta cells

Caption: Insulin-containing pancreatic beta cells (green) derived from human stem cells. The red cells are producing another metabolic hormone, glucagon, that regulates blood glucose levels. Blue indicates cell nuclei.
Credit: The Salk Institute for Biological Studies, La Jolla, CA

In people with type 1 diabetes, the immune system kills off insulin-producing beta cells of the pancreas needed to control the amount of glucose in their bloodstream. As a result, they must monitor their blood glucose often and take replacement doses of insulin to keep it under control. Transplantation of donated pancreatic islets—tissue that contains beta cells—holds some promise as a therapy or even a cure for type 1 diabetes. However, such donor islets are in notoriously short supply [1]. Recent advances in stem cell research have raised hopes of one day generating an essentially unlimited supply of replacement beta cells perfectly matched to the patient to avoid transplant rejection.

A couple of years ago, researchers took a major step toward this goal by coaxing induced pluripotent stem cells (iPSCs), which are made from mature human cells, to differentiate into cells that closely resembled beta cells. But a few things were troublesome. The process was long and difficult, and the iPSC-derived cells were not quite as good at sensing glucose and secreting insulin as cells in a healthy person. They also looked and, in some ways, acted like beta cells, but were unable to mature fully in the lab. Now, an NIH-funded team has succeeded in finding an additional switch that enables iPSC-derived beta cells to mature and produce insulin in a dish—a significant step toward moving this work closer to the clinical applications that many diabetics have wanted.

Continue reading

Obesity Research: Study Shows Significant Benefits of Modest Weight Loss

5% weight lossFor the one in three American adults who are obese, recommendations to lose substantial amounts of weight through a combination of diet and exercise can seem daunting and, at times, hopeless. But a new study should come as encouraging news for all those struggling to lose the extra pounds: even a modest goal of 5 percent weight loss delivers considerable health benefits.

In the NIH-funded study, people with obesity who lost just 5 percent of their body weight—about 12 pounds on average—showed improvements in several risk factors for type 2 diabetes and heart disease. They also showed metabolic improvements in many parts of the body, including the liver, pancreas, muscle, and fat tissue. While people who lost additional weight enjoyed further improvements in their health, the findings reported in the journal Cell Metabolism show that sometimes it really does pay to start small [1].

Continue reading

Creative Minds: What Can Hibernation Tell Us About Human Health?

Black bear

Credit: Karen Laubenstein (Big Game Alaska)/U.S. Fish and Wildlife Service

When bears, bats, and other animals prepare to hibernate, they pack on fat at an impressive pace to almost double their weight. As they drift off into their winter slumber, their heart rates, breathing, and metabolism slow dramatically. Hibernating mammals can survive in this state of torpor for a period of weeks or even months without eating or drinking anything at all!

It’s a fascinating and still rather mysterious process—and one that William Israelsen of The University of Texas Southwestern Medical Center, Dallas, thinks may yield intriguing insights with implications for human health. A recipient of a 2015 NIH Director’s Early Independence Award, Israelsen plans to use a little-known mouse species to study hibernation in the laboratory at a level of detail that’s not possible in the wild. He especially wants to learn how hibernating animals shift their metabolic gears over the course of the year, and what those findings might reveal about human obesity, cancer, and other health conditions.

Continue reading

What Is Obesity? Metabolic Signatures Offer New Comprehensive View

Silhouettes over an NMR

Credit: Adapted from Elliott, P et al., Sci Transl Med. 2015 Apr 29;7(285)

As obesity has risen in the United States and all around the world, so too have many other obesity-related health conditions: diabetes, heart disease, stroke, cancer, and maybe even Alzheimer’s disease. But how exactly do those extra pounds lead to such widespread trouble, and how might we go about developing better ways to prevent or alleviate this very serious health threat?

In a new study in Science Translational Medicine [1], researchers performed sophisticated analyses of the molecules excreted in human urine to produce one of the most comprehensive pictures yet of the metabolic signature that appears to correlate with obesity. This work provides a fascinating preview of things to come as researchers from metabolomics, microbiomics, and a wide variety of other fields strive to develop more precise approaches to managing and preventing disease.

Continue reading