Creative Minds: Potential Diabetes Lessons from Binge-Eating Snakes

Secor with a snake

Stephen Secor/Credit: Secor Lab

Many people would do just about anything to avoid an encounter with a snake. Not Stephen Secor. Growing up in central New York State, Secor was drawn to them. He’d spend hours frolicking through forest and field, flipping rocks and hoping to find one. His animal-loving mother encouraged him to keep looking, and she even let him keep a terrarium full of garter snakes in his bedroom. Their agreement: He must take good care of them—and please make sure they don’t get loose.

As a teen, Secor considered a career as a large-animal veterinarian. But a college zoology course led him right back to his fascination with snakes. Now a professor at the University of Alabama, Tuscaloosa, he’s spent 25 years trying to understand how some snakes, such as the Burmese python shown above, can fast for weeks or even months, and then go on a sudden food binge. Secor’s interest in the feast-or-famine digestive abilities of these snakes has now taken an unexpected turn that he never saw coming: a potential treatment to help people with diabetes.

Continue reading

Protein Links Gut Microbes, Biological Clocks, and Weight Gain

Fat calls with and without NFIL3

Caption: Lipids (red) inside mouse intestinal cells with and without NFIL3.
Credit: Lora V. Hooper, University of Texas Southwestern Medical Center, Dallas

The American epidemic of obesity is a major public health concern, and keeping off the extra pounds is a concern for many of us. Yet it can also be a real challenge for people who may eat normally but get their days and nights mixed up, including night-shift workers and those who regularly travel overseas. Why is that?

The most obvious reason is the odd hours throw a person’s 24-hour biological clock—and metabolism—out of sync. But an NIH-funded team of researchers has new evidence in mice to suggest the answer could go deeper to include the trillions of microbes that live in our guts—and, more specifically, the way they “talk” to intestinal cells. Their studies suggest that what gut microbes “say” influences the activity of a key clock-driven protein called NFIL3, which can set intestinal cells up to absorb and store more fat from the diet while operating at hours that might run counter to our fixed biological clocks.

Continue reading

Muscle Enzyme Explains Weight Gain in Middle Age

Woman weighing herself

Thinkstock/tetmc

The struggle to maintain a healthy weight is a lifelong challenge for many of us. In fact, the average American packs on an extra 30 pounds from early adulthood to age 50. What’s responsible for this tendency toward middle-age spread? For most of us, too many calories and too little exercise definitely play a role. But now comes word that another reason may lie in a strong—and previously unknown—biochemical mechanism related to the normal aging process.

An NIH-led team recently discovered that the normal process of aging causes levels of an enzyme called DNA-PK to rise in animals as they approach middle age. While the enzyme is known for its role in DNA repair, their studies show it also slows down metabolism, making it more difficult to burn fat. To see if reducing DNA-PK levels might rev up the metabolism, the researchers turned to middle-aged mice. They found that a drug-like compound that blocked DNA-PK activity cut weight gain in the mice by a whopping 40 percent!

Continue reading

Moving Toward Answers in ME/CFS

Woman in bed

Thinkstock/Katarzyna Bialasiewicz

Updated September 27, 2017: The National Institutes of Health (NIH) will award four grants to establish a coordinated scientific research effort on myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). The total cost of the projects for fiscal year 2017 will be over $7 million, with support from multiple NIH Institutes and Centers that are part of the Trans-NIH ME/CFS Working Group.

The grants will support the creation of a consortium made up of three Collaborative Research Centers (CRC) and a Data Management Coordinating Center (DMCC). The CRCs will each conduct independent research but will also collaborate on several projects, forming a network to help advance knowledge on ME/CFS. The data will be managed by the DMCC and will be shared among researchers within the CRCs and more broadly with the research community.


Imagine going to work or school every day, working out at the gym, spending time with family and friends—basically, living your life in a full and vigorous way. Then one day, you wake up, feeling sick. A bad cold maybe, or perhaps the flu. A few days pass, and you think it should be over—but it’s not, you still feel achy and exhausted. Now imagine that you never get better— plagued by unrelenting fatigue not relieved by sleep. Any exertion just makes you worse. You are forced to leave your job or school and are unable to participate in any of your favorite activities; some days you can’t even get out of bed. The worst part is that your doctors don’t know what is wrong and nothing seems to help.

Unfortunately, this is not fiction, but reality for at least a million Americans—who suffer from a condition that carries the unwieldy name of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a perplexing disease that biomedical research desperately needs to unravel [1]. Very little is currently known about what causes ME/CFS or its biological basis [2]. Among the many possibilities that need to be explored are problems in cellular metabolism and changes in the immune system.

Continue reading

Creative Minds: The Worm Tissue-ome Teaches Developmental Biology for Us All

C. elegans

Caption: An adult Caenorhabditis elegans, 5 days
Credit: Coleen Murphy, Princeton University, Princeton, NJ

In the nearly 40 years since Nobel Prize-winning scientist Sydney Brenner proposed using a tiny, transparent soil worm called Caenorhabditis elegans as a model organism for biomedical research, C. elegans has become one of the most-studied organisms on the planet. Researchers have determined that C. elegans has exactly 959 cells, 302 of which are neurons. They have sequenced and annotated its genome, developed an impressive array of tools to study its DNA, and characterized the development of many of its tissues.

But what researchers still don’t know is exactly how all of these parts work together to coordinate this little worm’s response to changes in nutrition, environment, health status, and even the aging process. To learn more, 2015 NIH Director’s Pioneer Award winner Coleen Murphy of Princeton University, Princeton, NJ, has set out to analyze which genes are active, or transcribed, in each of the major tissues of adult C. elegans, building the framework for what’s been dubbed the C. elegans “tissue-ome.”

Continue reading