Muscle Enzyme Explains Weight Gain in Middle Age

Woman weighing herself

Thinkstock/tetmc

The struggle to maintain a healthy weight is a lifelong challenge for many of us. In fact, the average American packs on an extra 30 pounds from early adulthood to age 50. What’s responsible for this tendency toward middle-age spread? For most of us, too many calories and too little exercise definitely play a role. But now comes word that another reason may lie in a strong—and previously unknown—biochemical mechanism related to the normal aging process.

An NIH-led team recently discovered that the normal process of aging causes levels of an enzyme called DNA-PK to rise in animals as they approach middle age. While the enzyme is known for its role in DNA repair, their studies show it also slows down metabolism, making it more difficult to burn fat. To see if reducing DNA-PK levels might rev up the metabolism, the researchers turned to middle-aged mice. They found that a drug-like compound that blocked DNA-PK activity cut weight gain in the mice by a whopping 40 percent!

Continue reading

Creative Minds: Do Celebrity Endorsements Influence Teens’ Health?

Marie Bragg

Marie Bragg

Marie Bragg is a first-generation American, raised by a mother who immigrated to Florida from Trinidad. She watched her uncle in Florida cope effectively with type 2 diabetes, taking prescription drugs and following doctor-recommended dietary changes. But several of her Trinidadian relatives also had type 2 diabetes, and often sought to manage their diabetes by alternative means—through home remedies and spiritual practices.

This situation prompted Bragg to develop, at an early age, a strong interest in how approaches to health care may differ between cultures. But that wasn’t Bragg’s only interest—her other love was sports, having played on a high school soccer team that earned two state championships in Florida. That made her keenly aware of the sway that celebrity athletes, such as Michael Jordan and Serena Williams, could have on the public, particularly on young people. Today, Bragg combines both of her childhood interests—the influence of celebrities and the power of cultural narratives—in research that she is conducting as an Assistant Professor of Population Health at New York University Langone Medical Center and as a 2015 recipient of an NIH Director’s Early Independence Award.

Continue reading

International “Big Data” Study Offers Fresh Insights into T2D

World map

Caption: This international “Big Data” study involved hundreds of researchers in 22 countries (red).

It’s estimated that about 10 percent of the world’s population either has type 2 diabetes (T2D) or will develop the disease during their lives [1]. Type 2 diabetes (formerly called “adult-onset”) happens when the body doesn’t produce or use insulin properly, causing glucose levels to rise. While diet and exercise are critical contributory factors to this potentially devastating disease, genetic factors are also important. In fact, over the last decade alone, studies have turned up more than 80 genetic regions that contribute to T2D risk, with much more still to be discovered.

Now, a major international effort, which includes work from my own NIH intramural research laboratory, has published new data that accelerate understanding of how a person’s genetic background contributes to T2D risk. The new study, reported in Nature and unprecedented in its investigative scale and scope, pulled together the largest-ever inventory of DNA sequence changes involved in T2D, and compared their distribution in people from around the world [2]. This “Big Data” strategy has already yielded important new insights into the biology underlying the disease, some of which may yield novel approaches to diabetes treatment and prevention.

Continue reading

Precision Medicine: Using Genomic Data to Predict Drug Side Effects and Benefits

Gene Variant and Corornary Heart DiseasePeople with type 2 diabetes are at increased risk for heart attacks, stroke, and other forms of cardiovascular disease, and at an earlier age than other people. Several years ago, the Food and Drug Administration (FDA) recommended that drug developers take special care to show that potential drugs to treat diabetes don’t adversely affect the cardiovascular system [1]. The challenge in implementing that laudable exhortation is that a drug’s long-term health risks may not become clear until thousands or even tens of thousands of people have received it over the course of many years, sometimes even decades.

Now, a large international study, partly funded by NIH, offers some good news: proof-of-principle that “Big Data” tools can help to identify a drug’s potential side effects much earlier in the drug development process [2]. The study, which analyzed vast troves of genomic and clinical data collected over many years from more than 50,000 people with and without diabetes, indicates that anti-diabetes therapies that lower glucose by targeting the product of a specific gene, called GLP1R, are unlikely to boost the risk of cardiovascular disease. In fact, the evidence suggests that such drugs might even offer some protection against heart disease.

Continue reading

Progress Toward Stem Cell Treatment for Diabetes

patient-derived pancreatic beta cells

Caption: Insulin-containing pancreatic beta cells (green) derived from human stem cells. The red cells are producing another metabolic hormone, glucagon, that regulates blood glucose levels. Blue indicates cell nuclei.
Credit: The Salk Institute for Biological Studies, La Jolla, CA

In people with type 1 diabetes, the immune system kills off insulin-producing beta cells of the pancreas needed to control the amount of glucose in their bloodstream. As a result, they must monitor their blood glucose often and take replacement doses of insulin to keep it under control. Transplantation of donated pancreatic islets—tissue that contains beta cells—holds some promise as a therapy or even a cure for type 1 diabetes. However, such donor islets are in notoriously short supply [1]. Recent advances in stem cell research have raised hopes of one day generating an essentially unlimited supply of replacement beta cells perfectly matched to the patient to avoid transplant rejection.

A couple of years ago, researchers took a major step toward this goal by coaxing induced pluripotent stem cells (iPSCs), which are made from mature human cells, to differentiate into cells that closely resembled beta cells. But a few things were troublesome. The process was long and difficult, and the iPSC-derived cells were not quite as good at sensing glucose and secreting insulin as cells in a healthy person. They also looked and, in some ways, acted like beta cells, but were unable to mature fully in the lab. Now, an NIH-funded team has succeeded in finding an additional switch that enables iPSC-derived beta cells to mature and produce insulin in a dish—a significant step toward moving this work closer to the clinical applications that many diabetics have wanted.

Continue reading