Skip to main content

macrophage

Caught on Video: Cancer Cells in Act of Cannibalism

Posted on by

Tumors rely on a variety of tricks to grow, spread, and resist our best attempts to destroy them. Now comes word of yet another of cancer’s surprising stunts: when chemotherapy treatment hits hard, some cancer cells survive by cannibalizing other cancer cells.

Researchers recently caught this ghoulish behavior on video. In what, during this Halloween season, might look a little bit like The Blob, you can see a down-for-the-count breast cancer cell (green), treated earlier with the chemotherapy drug doxorubicin, gobbling up a neighboring cancer cell (red). The surviving cell delivers its meal to internal compartments called lysosomes, which digest it in a last-ditch effort to get some nourishment and keep going despite what should have been a lethal dose of a cancer drug.

Crystal Tonnessen-Murray, a postdoctoral researcher in the lab of James Jackson, Tulane University School of Medicine, New Orleans, captured these dramatic interactions using time-lapse and confocal microscopy. When Tonnessen-Murray saw the action, she almost couldn’t believe her eyes. Tumor cells eating tumor cells wasn’t something that she’d learned about in school.

As the NIH-funded team described in the Journal of Cell Biology, these chemotherapy-treated breast cancer cells were not only cannibalizing their neighbors, they were doing it with remarkable frequency [1]. But why?

A possible explanation is that some cancer cells resist chemotherapy by going dormant and not dividing. The new study suggests that while in this dormant state, cannibalism is one way that tumor cells can keep going.

The study also found that these acts of cancer cell cannibalism depend on genetic programs closely resembling those of immune cells called macrophages. These scavenging cells perform their important protective roles by gobbling up invading bacteria, viruses, and other infectious microbes. Drug-resistant breast cancer cells have apparently co-opted similar programs in response to chemotherapy but, in this case, to eat their own neighbors.

Tonnessen-Murray’s team confirmed that cannibalizing cancer cells have a survival advantage. The findings suggest that treatments designed to block the cells’ cannibalistic tendencies might hold promise as a new way to treat otherwise hard-to-treat cancers. That’s a possibility the researchers are now exploring, although they report that stopping the cells from this dramatic survival act remains difficult.

Reference:

[1] Chemotherapy-induced senescent cancer cells engulf other cells to enhance their survival. Tonnessen-Murray CA, Frey WD, Rao SG, Shahbandi A, Ungerleider NA, Olayiwola JO, Murray LB, Vinson BT, Chrisey DB, Lord CJ, Jackson JG. J Cell Biol. 2019 Sep 17.

Links:

Breast Cancer (National Cancer Institute/NIH)

James Jackson (Tulane University School of Medicine, New Orleans)

NIH Support: National Institute of General Medical Sciences


Snapshots of Life: The Brain’s Microscopic Green Trash Bins

Posted on by

Zebrafish brain

Credit: Marina Venero Galanternik, Daniel Castranova, Tuyet Nguyen, and Brant M. Weinstein, NICHD, NIH

There are trash bins in our homes, on our streets, and even as a popular icon on our desktop computers. And as this colorful image shows, trash bins of the cellular variety are also important in the brain.

This image—a winner in the Federation of American Societies for Experimental Biology’s 2017 BioArt competition—shows the brain of an adult zebrafish, a popular organism for studying how the brain works. It captures dense networks of blood vessels (red) lining the outer surface of the brain. Next to many of these vessels sit previously little-studied cells called fluorescent granular perithelial cells (yellowish green). Researchers now believe these cells, often shortened to FGPs, act much like trash receptacles that continuously take in and store waste products to keep the brain tidy and functioning well.


Cool Videos: Spying on Cancer Cell Invasion

Posted on by

Spying on Cancer Cell Invation

If you’re a fan of the Mission: Impossible spy thrillers, you might think that secret agent Ethan Hunt has done it all. But here’s a potentially life-saving mission that his force has yet to undertake: spying on cancer cells. Never fear—some scientific sleuths already have!

So, have a look at this bio-action flick recently featured in the American Society for Cell Biology’s 2015 Celldance video series. Without giving too much of the plot away, let me just say that it involves cancer cells escaping from a breast tumor and spreading, or metastasizing, to other parts of the body. Along the way, those dastardly cancer cells take advantage of collagen fibers to make a tight-rope getaway and recruit key immune cells, called macrophages, to serve as double agents to aid and abet their diabolical spread.


Snapshots of Life: Host vs. Pathogen

Posted on by

Cryptoccocus neoformans

Caption: This scanning electron microscopy image shows mouse macrophages (green) interacting with a fungal cell (blue).
Credit: Sabriya Stukes and Hillary Guzik, Albert Einstein College of Medicine

Macrophages are white blood cells that generally destroy foreign invaders by engulfing them. It’s a tried-and-true strategy, but it doesn’t always work. Cryptoccocus neoformans, a deadly fungal pathogen commonly found in the feces of pigeons, can foil even the best macrophages. No one has captured this grand escape—but researchers are getting a whole lot closer to doing so.

Sabriya Stukes, an NIH-funded microbiologist at New York’s Albert Einstein College of Medicine, studies the interactions between C. neoformans and macrophages to determine how the former causes the lung infection cryptococcosis, which can be deadly for people with compromised immune systems. Stukes believes what makes C. neoformans so dangerous is that it can survive the acid death chamber inside macrophages—a situation that spells doom for most other pathogens. A big reason behind this fungus’s power of survival is its thick coat of polysaccharides, which serves as woolly-looking armor. Once a macrophage engulfs the fungus, this coat can give the white blood cell “indigestion,” prompting it to spit the fungus back into the lungs where it can cause disease.