Skip to main content


How Neurons Make Connections

Posted on by Lawrence Tabak, D.D.S., Ph.D.

Credit: Emily Heckman, Doe Lab, University of Oregon, Eugene

For many people, they are tiny pests. These fruit flies that sometimes hover over a bowl of peaches or a bunch of bananas. But for a dedicated community of researchers, fruit flies are an excellent model organism and source of information into how neurons self-organize during the insect’s early development and form a complex, fully functioning nervous system.

That’s the scientific story on display in this beautiful image of a larval fruit fly’s developing nervous system. Its subtext is: fundamental discoveries in the fruit fly, known in textbooks as Drosophila melanogaster, provide basic clues into the development and repair of the human nervous system. That’s because humans and fruit flies, though very distantly related through the millennia, still share many genes involved in their growth and development. In fact, 60 percent of the Drosophila genome is identical to ours.

Once hatched, as shown in this image, a larval fly uses neurons (magenta) to sense its environment. These include neurons that sense the way its body presses against the surrounding terrain, as needed to coordinate the movements of its segmented body parts and crawl in all directions.

This same set of neurons will generate painful sensations, such as the attack of a parasitic wasp. Paintbrush-like neurons in the fly’s developing head (magenta, left side) allow the insect to taste the sweetness of a peach or banana.

There is a second subtype of neurons, known as proprioceptors (green). These neurons will give the young fly its “sixth sense” understanding about where its body is positioned in space. The complete collection of developing neurons shown here are responsible for all the fly’s primary sensations. They also send these messages on to the insect’s central nervous system, which contains thousands of other neurons that are hidden from view.

Emily Heckman, now a postdoctoral researcher at the Michigan Neuroscience Institute, University of Michigan, Ann Arbor, captured this image during her graduate work in the lab of Chris Doe, University of Oregon, Eugene. For her keen eye, she received a trainee/early-career BioArt Award from the Federation of American Societies for Experimental Biology (FASEB), which each year celebrates the art of science.

The image is one of many from a much larger effort in the Doe lab that explores the way neurons that will partner find each other and link up to drive development. Heckman and Doe also wanted to know how neurons in the developing brain interconnect into integrated neural networks, or circuits, and respond when something goes wrong. To find out, they disrupted sensory neurons or forced them to take alternate paths and watched to see what would happen.

As published in the journal eLife [1], the system has an innate plasticity. Their findings show that developing sensory neurons instruct one another on how to meet up just right. If one suddenly takes an alternate route, its partner can still reach out and make the connection. Once an electrically active neural connection, or synapse, is made, the neural signals themselves slow or stop further growth. This kind of adaptation and crosstalk between neurons takes place only during a particular critical window during development.

Heckman says part of what she enjoys about the image is how it highlights that many sensory neurons develop simultaneously and in a coordinated process. What’s also great about visualizing these events in the fly embryo is that she and other researchers can track many individual neurons from the time they’re budding stem cells to when they become a fully functional and interconnected neural circuit.

So, the next time you see fruit flies hovering in the kitchen, just remember there’s more to their swarm than you think. Our lessons learned studying them will help point researchers toward new ways in people to restore or rebuild neural connections after devastating disruptions from injury or disease.


Presynaptic contact and activity opposingly regulate postsynaptic dendrite outgrowth. Heckman EL, Doe CQ. Elife. 2022 Nov 30;11:e82093.


Research Organisms (National Institute of General Medical Sciences/NIH)

Doe Lab (University of Oregon, Eugene)

Emily Heckman (University of Michigan, Ann Arbor)

BioArt Awards (Federation of American Societies for Experimental Biology, Rockville, MD)

NIH Support: Eunice Kennedy Shriver National Institute of Child Health and Human Development

Finding Beauty in the Nervous System of a Fruit Fly Larva

Posted on by Dr. Francis Collins

Wow! Click on the video. If you’ve ever wondered where those pesky flies in your fruit bowl come from, you’re looking at it right now. It’s a fruit fly larva. And this 3D movie offers never-before-seen details into proprioception—the brain’s sixth sense of knowing the body’s location relative to nearby objects or, in this case, fruit.

This live-action video highlights the movement of the young fly’s proprioceptive nerve cells. They send signals to the fly brain that are essential for tracking the body’s position in space and coordinating movement. The colors indicate the depth of the nerve cells inside the body, showing those at the surface (orange) and those further within (blue).

Such movies make it possible, for the first time, to record precisely how every one of these sensory cells is arranged within the body. They also provide a unique window into how body positions are dynamically encoded in these cells, as a segmented larva inches along in search of food.

The video was created using a form of confocal microscopy called Swept Confocally Aligned Planar Excitation, or SCAPE. It captures 3D images by sweeping a sheet of laser light back and forth across a living sample. Even better, it does this while the microscope remains completely stationary—no need for a researcher to move any lenses up or down, or hold a live sample still.

Most impressively, with this new high-speed technology, developed with support from the NIH’s BRAIN Initiative, researchers are now able to capture videos like the one seen above in record time, with each whole volume recorded in under 1/10th of a second! That’s hundreds of times faster than with a conventional microscope, which scans objects point by point.

As reported in Current Biology, the team, led by Elizabeth Hillman and Wesley Grueber, Columbia University, New York, didn’t stop at characterizing the structural details and physical movements of nerve cells involved in proprioception in a crawling larva. In another set of imaging experiments, they went a step further, capturing faint flashes of green in individual labeled nerve cells each time they fired. (You have to look very closely to see them.) With each wave of motion, proprioceptive nerve cells light up in sequence, demonstrating precisely when they are sending signals to the animal’s brain.

From such videos, the researchers have generated a huge amount of data on the position and activity of each proprioceptive nerve cell. The data show that the specific position of each cell makes it uniquely sensitive to changes in position of particular segments of a larva’s body. While most of the proprioceptive nerve cells fired when their respective body segment contracted, others were attuned to fire when a larval segment stretched.

Taken together, the data show that proprioceptive nerve cells provide the brain with a detailed sequence of signals, reflecting each part of a young fly’s undulating body. It’s clear that every proprioceptive neuron has a unique role to play in the process. The researchers now will create similar movies capturing neurons in the fly’s central nervous system.

A holy grail of the BRAIN Initiative is to capture the brain in action. With these advances in imaging larval flies, researchers are getting ever closer to understanding the coordinated activities of an organism’s complete nervous system—though this one is a lot simpler than ours! And perhaps this movie—and the anticipation of the sequels to come—may even inspire a newfound appreciation for those pesky flies that sometimes hover nearby.


[1] Characterization of Proprioceptive System Dynamics in Behaving Drosophila Larvae Using High-Speed Volumetric Microscopy. Vaadia RD, Li W, Voleti V, Singhania A, Hillman EMC, Grueber WB. Curr Biol. 2019 Mar 18;29(6):935-944.e4.


Using Research Organisms to Study Health and Disease (National Institute of General Medical Sciences/NIH)

The Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative (NIH)

Hillman Lab (Columbia University, New York)

Grueber Lab (Columbia University, New York)

NIH Support: National Institute of Neurological Disorders and Stroke; Eunice Kennedy Shriver National Institute of Child Health and Human Development