Skip to main content

post-traumatic stress disorder

Unlocking the Brain’s Memory Retrieval System

Posted on by

Memory Trace in Mouse Hippocampus

Credit:Sahay Lab, Massachusetts General Hospital, Boston

Play the first few bars of any widely known piece of music, be it The Star-Spangled Banner, Beethoven’s Fifth, or The Rolling Stones’ (I Can’t Get No) Satisfaction, and you’ll find that many folks can’t resist filling in the rest of the melody. That’s because the human brain thrives on completing familiar patterns. But, as we grow older, our pattern completion skills often become more error prone.

This image shows some of the neural wiring that controls pattern completion in the mammalian brain. Specifically, you’re looking at a cross-section of a mouse hippocampus that’s packed with dentate granule neurons and their signal-transmitting arms, called axons, (light green). Note how the axons’ short, finger-like projections, called filopodia (bright green), are interacting with a neuron (red) to form a “memory trace” network. Functioning much like an online search engine, memory traces use bits of incoming information, like the first few notes of a song, to locate and pull up more detailed information, like the complete song, from the brain’s repository of memories in the cerebral cortex.


Creative Minds: Seeing Memories in a New Light

Posted on by

Steve Ramirez

Steve Ramirez/Joshua Sariñana

Whether it’s lacing up for a morning run, eating blueberry scones, or cheering on the New England Patriots, Steve Ramirez loves life and just about everything in it. As an undergraduate at Boston University, this joie de vivre actually made Ramirez anxious about choosing just one major. A serendipitous conversation helped him realize that all of the amazing man-made stuff in our world has a common source: the human brain.

So, Ramirez decided to pursue neuroscience and began exploring the nature of memory. Employing optogenetics (using light to control brain cells) in mice, he tagged specific neurons that housed fear-inducing memories, making the neurons light sensitive and amenable to being switched on at will.

In groundbreaking studies that earned him a spot in Forbes 2015 “30 Under 30” list, Ramirez showed that it’s possible to reactivate memories experimentally in a new context, recasting them in either a more negative or positive behavior-changing light [1–3]. Now, with support from a 2016 NIH Director’s Early Independence Award, Ramirez, who runs his own lab at Boston University, will explore whether activating good memories holds promise for alleviating chronic stress and psychiatric disease.