Snapshots of Life: Portrait of a Bacterial Biofilm

Colony of Pseudomonas aeruginosa

Credit: Scott Chimileski and Roberto Kolter, Harvard Medical School, Boston

In nature, there is strength in numbers. Sometimes, those numbers also have their own unique beauty. That’s the story behind this image showing an intricate colony of millions of the single-celled bacterium Pseudomonas aeruginosa, a common culprit in the more than 700,000 hospital-acquired infections estimated to occur annually in the United States. [1]. The bacteria have self-organized into a sticky, mat-like colony called a biofilm, which allows them to cooperate with each other, adapt to changes in their environment, and ensure their survival.

In this image, the Pseudomonas biofilm has grown in a laboratory dish to about the size of a dime. Together, the millions of independent bacterial cells have created a tough extracellular matrix of secreted proteins, polysaccharide sugars, and even DNA that holds the biofilm together, stained in red. The darkened areas at the center come from the bacteria’s natural pigments.

Continue reading

Snapshots of Life: Tales from the (Intestinal) Crypt!

Caption: This “spooky” video ends with a scientific image of intestinal crypts (blue and green) plus organoids made from cultured crypt stem cells (pink). 

As Halloween approaches, some of you might be thinking about cueing up the old TV series “Tales from the Crypt” and diving into its Vault of Horror for a few hours. But today I’d like to share the story of a quite different and not nearly so scary kind of crypt: the crypts of Lieberkühn, more commonly called intestinal crypts.

This confocal micrograph depicts a row of such crypts (marked in blue and green) lining a mouse colon. In mice, as well as in humans, the intestines contain millions of crypts, each of which has about a half-dozen stem cells at its base that are capable of regenerating the various types of tissues that make up these tiny glands. What makes my tale of the crypt particularly interesting are the oval structures (pink), which are organoids that have been engineered from cultured crypt stem cells and then transplanted into a mouse model. If you look at the organoids closely, you’ll see Paneth cells (aqua blue), which are immune cells that support the stem cells and protect the intestines from bacterial invasion.

A winner in the 2016 “Image Awards” at the Koch Institute Public Galleries, Massachusetts Institute of Technology (MIT), Cambridge, this image was snapped by Jatin Roper, a physician-scientist in the lab of Omer Yilmaz, with the help of his MIT collaborator Tuomas Tammela. Roper and his colleagues have been making crypt organoids for a few years by placing the stem cells in a special 3D chamber, where they are bathed with the right protein growth factors at the right time to spur them to differentiate into the various types of cells found in a crypt.

Once the organoids are developmentally complete, Roper can inject them into mice and watch them take up residence. Then he can begin planning experiments.

For example, Roper’s group is now considering using the organoids to examine how high-fat and low-calorie diets affect intestinal function in mice. Another possibility is to use similar organoids to monitor the effect of aging on the colon or to test which of a wide array of targeted therapies might work best for a particular individual with colon cancer.

Links:

Video: Gut Reaction (Jatin Roper)

Jatin Roper (Tufts Medical Center, Boston)

Omer Yilmaz (Massachusetts Institute of Technology, Cambridge)

The Koch Institute Galleries (MIT)

NIH Support: National Cancer Institute; National Institute on Aging

Snapshots of Life: A Flare for the Dramatic

lipid-covered water drop

Credit: Valentin Romanov, University of Utah, Salt Lake City

Oil and water may not mix, but under the right conditions—like those in the photo above—it can sure produce some interesting science that resembles art. You’re looking at a water droplet suspended in an emulsion of olive oil (black and purple) and lipids, molecules that serve as the building blocks of cell membranes. Each lipid has been tagged with a red fluorescent marker, and what look like red and yellow flames are the markers reacting to a beam of UV light. Their glow shows the lipids sticking to the surface of the water droplet, which will soon engulf the droplet to form a single lipid bilayer, which can later be transformed into a lipid bilayer that closely resembles a cell membrane. Scientists use these bubbles, called liposomes, as artificial cells for a variety of research purposes.

In this case, the purpose is structural biology studies. Valentin Romanov, the graduate student at the University of Utah, Salt Lake City, who snapped the image, creates liposomes to study proteins that help cells multiply. By encapsulating and letting the proteins interact with lipids in the artificial cell membrane, Romanov and his colleagues in the NIH-supported labs of Bruce Gale at the University of Utah and Adam Frost at the University of California, San Francisco, can freeze and capture their changing 3D structures at various points in the cell division process with high-resolution imaging techniques. These snapshots will help the researchers to understand in finer detail how the proteins work and perhaps to design drugs to manipulate their functions.

Continue reading

Snapshots of Life: New Target for Herpes Treatment?


HSV-1Something about this image reminds me of that wacky and infectious old song: “It was a one-eyed, one-horned, flyin’ purple people eater …” Of course, this purple blob isn’t a people eater, but it does happen to be infectious. What you see here is a 3D rendering of a protein that the herpes simplex virus 1 (HSV-1)—one of two herpes viruses that cause genital herpes and cold sores—depends upon to infect human cells.

When a cell is infected with HSV-1, the virus inserts its DNA into human cells, periodically coming out of dormancy to make more copies of itself. However, errors sometimes occur when the DNA is replicated. When that happens, an HSV-1 protein, dubbed infected cell protein 8 (ICP8), stitches broken pieces of DNA back together. That’s what you see depicted in this schematic, which shows two single strands of DNA (red with multicolor bases) entering an ICP8 complex (purplish blue) to be reannealed into DNA’s familiar double-stranded helix (red).

Continue reading

Snapshots of Life: Reward Seeking, in Technicolor

Rainbow noodles

Credit: Saleem Nicola, Vincent B. McGinty, James J. Kim, and Sylvie Lardeux

Originally, this vibrant picture was just a set of black lines on a graph, charting the various paths of a laboratory rat as it made its way toward a lever to release a shot of sugar water. But Dr. Saleem Nicola, an NIH-funded researcher at Albert Einstein College of Medicine, Bronx, NY, wanted to pique the interest of his colleagues, so he decided to have a bit of fun with the image.

First, Dr. Nicola broadened the lines, giving them a noodle-like appearance. He then went on to use other information about the rat journeys to add rainbow hues, and, finally, he replaced the white background with black. The result is an eye-catching image that is among the winners of the Federation of American Societies for Experimental Biology’s 2013 BioArt competition.

Continue reading