Skip to main content

nervous system

3D Neuroscience at the Speed of Life

Posted on by

This fluorescent worm makes for much more than a mesmerizing video. It showcases a significant technological leap forward in our ability to capture in real time the firing of individual neurons in a living, freely moving animal.

As this Caenorhabditis elegans worm undulates, 113 neurons throughout its brain and body (green/yellow spots) get brighter and darker as each neuron activates and deactivates. In fact, about halfway through the video, you can see streaks tracking the positions of individual neurons (blue/purple-colored lines) from one frame to the next. Until now, it would have been technologically impossible to capture this “speed of life” with such clarity.

With funding from the NIH-led Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative, Elizabeth Hillman at Columbia University, New York, has pioneered the pairing of a 3D live-imaging microscope with an ultra-fast camera. This pairing, showcased above, is a technique called Swept Confocally Aligned Planar Excitation (SCAPE) microscopy.

Since first demonstrating SCAPE in February 2015 [1], Hillman and her team have worked hard to improve, refine, and expand the approach. Recently, they used SCAPE 1.0 to image how proprioceptive neurons in fruit-fly larvae sense body position while crawling. Now, as described in Nature Methods, they introduce SCAPE “2.0,” with boosted resolution and a much faster camera—enabling 3D imaging at speeds hundreds of times faster than conventional microscopes [2]. To track a very wiggly worm, the researchers image their target 25 times a second!

As with the first-generation SCAPE, version 2.0 uses a scanning mirror to sweep a slanted sheet of light across a sample. This same mirror redirects light coming from the illuminated plane to focus onto a stationary high-speed camera. The approach lets SCAPE grab 3D imaging at very high speeds, while also causing very little photobleaching compared to conventional point-scanning microscopes, reducing sample damage that often occurs during time-lapse microscopy.

Like SCAPE 1.0, since only a single, stationary objective lens is used, the upgraded 2.0 system doesn’t need to hold, move, or disturb a sample during imaging. This flexibility enables scientists to use SCAPE in a wide range of experiments where they can present stimuli or probe an animal’s behavior—all while imaging how the underlying cells drive and depict those behaviors.

The SCAPE 2.0 paper shows the system’s biological versatility by also recording the beating heart of a zebrafish embryo at record-breaking speeds. In addition, SCAPE 2.0 can rapidly image large fixed, cleared, and expanded tissues such as the retina, brain, and spinal cord—enabling tracing of the shape and connectivity of cellular circuits. Hillman and her team are dedicated to exporting their technology; they provide guidance and a parts list for SCAPE 2.0 so that researchers can build their own version using inexpensive off-the-shelf parts.

Watching worms wriggling around may remind us of middle-school science class. But to neuroscientists, these images represent progress toward understanding the nervous system in action, literally at the speed of life!


[1] . Swept confocally-aligned planar excitation (SCAPE) microscopy for high speed volumetric imaging of behaving organisms. Bouchard MB, Voleti V, Mendes CS, Lacefield C, et al Nature Photonics. 2015;9(2):113-119.

[2] Real-time volumetric microscopy of in vivo dynamics and large-scale samples with SCAPE 2.0. Voleti V, Patel KB, Li W, Campos CP, et al. Nat Methods. 2019 Sept 27;16:1054–1062.


Using Research Organisms to Study Health and Disease (National Institute of General Medical Sciences/NIH)

The Brain Research through Advancing Innovative Neurotechnologies® (BRAIN) Initiative (NIH)

Hillman Lab (Columbia University, New York)

NIH Support: National Institute of Neurological Disorders and Stroke; National Heart, Lung, and Blood Institute

Creative Minds: Reprogramming the Brain

Posted on by

Cells of a mouse retina

Caption: Neuronal circuits in the mouse retina. Cone photoreceptors (red) enable color vision; bipolar neurons (magenta) relay information further along the circuit; and a subtype of bipolar neuron (green) helps process signals sensed by other photoreceptors in dim light.
Credit: Brian Liu and Melanie Samuel, Baylor College of Medicine, Houston.

When most people think of reprogramming something, they probably think of writing code for a computer or typing commands into their smartphone. Melanie Samuel thinks of brain circuits, the networks of interconnected neurons that allow different parts of the brain to work together in processing information.

Samuel, a researcher at Baylor College of Medicine, Houston, wants to learn to reprogram the connections, or synapses, of brain circuits that function less well in aging and disease and limit our memory and ability to learn. She has received a 2016 NIH Director’s New Innovator Award to decipher the molecular cues that encourage the repair of damaged synapses or enable neurons to form new connections with other neurons. Because extensive synapse loss is central to most degenerative brain diseases, Samuel’s reprogramming efforts could help point the way to preventing or correcting wiring defects before they advance to serious and potentially irreversible cognitive problems.

Regenerative Medicine: New Clue from Fish about Healing Spinal Cord Injuries

Posted on by

Zebrafish Spinal Cord

Caption: Tissue section of zebrafish spinal cord regenerating after injury. Glial cells (red) cross the gap between the severed ends first. Neuronal cells (green) soon follow. Cell nuclei are stained blue and purple.
Credit: Mayssa Mokalled and Kenneth Poss, Duke University, Durham, NC

Certain organisms have remarkable abilities to achieve self-healing, and a fascinating example is the zebrafish (Danio rerio), a species of tropical freshwater fish that’s an increasingly popular model organism for biological research. When the fish’s spinal cord is severed, something remarkable happens that doesn’t occur in humans: supportive cells in the nervous system bridge the gap, allowing new nerve tissue to restore the spinal cord to full function within weeks.

Pretty incredible, but how does this occur? NIH-funded researchers have just found an important clue. They’ve discovered that the zebrafish’s damaged cells secrete a molecule known as connective tissue growth factor a (CTGFa) that is essential in regenerating its severed spinal cord. What’s particularly encouraging to those looking for ways to help the 12,000 Americans who suffer spinal cord injuries each year is that humans also produce a form of CTGF. In fact, the researchers found that applying human CTGF near the injured site even accelerated the regenerative process in zebrafish. While this growth factor by itself is unlikely to produce significant spinal cord regeneration in human patients, the findings do offer a promising lead for researchers pursuing the next generation of regenerative therapies.

Snapshots of Life: Development in Exquisite Detail

Posted on by

Developmental biology

Credit: Shachi Bhatt and Paul Trainor, Stowers Institute for Medical Research, Kansas City, MO

If you’ve ever tried to take photos of wiggly kids, you know that it usually takes several attempts before you get the perfect shot. It’s often the same for biomedical researchers when taking images with microscopes because there are so many variables—from sample preparation to instrument calibration—to take into account. Still, there are always exceptions where everything comes together just right, and you are looking at one of them! On her first try at using a confocal microscope to image this cross-section of a mouse embryo’s torso, postdoc Shachi Bhatt captured a gem of an image that sheds new light on mammalian development.

Bhatt, who works in the NIH-supported lab of Paul Trainor at the Stowers Institute for Medical Research, Kansas City, MO, produced this micrograph as part of a quest to understand the striking parallels seen between the development of the nervous system and the vascular system in mammals. Fluorescent markers were used to label proteins uniquely expressed in each type of tissue: reddish-orange delineates developing nerve cells; gray highlights developing blood vessels; and yellow shows where the nerve cells and blood vessels overlap.