Cardiometabolic Disease: Big Data Tackles a Big Health Problem

Cardiometabolic risk lociMore and more studies are popping up that demonstrate the power of Big Data analyses to get at the underlying molecular pathology of some of our most common diseases. A great example, which may have flown a bit under the radar during the summer holidays, involves cardiometabolic disease. It’s an umbrella term for common vascular and metabolic conditions, including hypertension, impaired glucose and lipid metabolism, excess belly fat, and inflammation. All of these components of cardiometabolic disease can increase a person’s risk for a heart attack or stroke.

In the study, an international research team tapped into the power of genomic data to develop clearer pictures of the complex biocircuitry in seven types of vascular and metabolic tissue known to be affected by cardiometabolic disease: the liver, the heart’s aortic root, visceral abdominal fat, subcutaneous fat, internal mammary artery, skeletal muscle, and blood. The researchers found that while some circuits might regulate the level of gene expression in just one tissue, that’s often not the case. In fact, the researchers’ computational models show that such genetic circuitry can be organized into super networks that work together to influence how multiple tissues carry out fundamental life processes, such as metabolizing glucose or regulating lipid levels. When these networks are perturbed, perhaps by things like inherited variants that affect gene expression, or environmental influences such as a high-carb diet, sedentary lifestyle, the aging process, or infectious disease, the researchers’ modeling work suggests that multiple tissues can be affected, resulting in chronic, systemic disorders including cardiometabolic disease.

Continue reading

Big Data and Imaging Analysis Yields High-Res Brain Map

The HCP’s multi-modal cortical parcellation

Caption: Map of 180 areas in the left and right hemispheres of the cerebral cortex.
Credit: Matthew F. Glasser, David C. Van Essen, Washington University Medical School, Saint Louis, Missouri

Neuroscientists have been working for a long time to figure out how the human brain works, and that has led many through the years to attempt to map its various regions and create a detailed atlas of their complex geography and functions. While great progress has been made in recent years, existing brain maps have remained relatively blurry and incomplete, reflecting only limited aspects of brain structure or function and typically in just a few people.

In a study reported recently in the journal Nature, an NIH-funded team of researchers has begun to bring this map of the human brain into much sharper focus [1]. By combining multiple types of cutting-edge brain imaging data from more than 200 healthy young men and women, the researchers were able to subdivide the cerebral cortex, the brain’s outer layer, into 180 specific areas in each hemisphere. Remarkably, almost 100 of those areas had never before been described. This new high-resolution brain map will advance fundamental understanding of the human brain and will help to bring greater precision to the diagnosis and treatment of many brain disorders.

Continue reading

International “Big Data” Study Offers Fresh Insights into T2D

World map

Caption: This international “Big Data” study involved hundreds of researchers in 22 countries (red).

It’s estimated that about 10 percent of the world’s population either has type 2 diabetes (T2D) or will develop the disease during their lives [1]. Type 2 diabetes (formerly called “adult-onset”) happens when the body doesn’t produce or use insulin properly, causing glucose levels to rise. While diet and exercise are critical contributory factors to this potentially devastating disease, genetic factors are also important. In fact, over the last decade alone, studies have turned up more than 80 genetic regions that contribute to T2D risk, with much more still to be discovered.

Now, a major international effort, which includes work from my own NIH intramural research laboratory, has published new data that accelerate understanding of how a person’s genetic background contributes to T2D risk. The new study, reported in Nature and unprecedented in its investigative scale and scope, pulled together the largest-ever inventory of DNA sequence changes involved in T2D, and compared their distribution in people from around the world [2]. This “Big Data” strategy has already yielded important new insights into the biology underlying the disease, some of which may yield novel approaches to diabetes treatment and prevention.

Continue reading

Precision Medicine: Using Genomic Data to Predict Drug Side Effects and Benefits

Gene Variant and Corornary Heart DiseasePeople with type 2 diabetes are at increased risk for heart attacks, stroke, and other forms of cardiovascular disease, and at an earlier age than other people. Several years ago, the Food and Drug Administration (FDA) recommended that drug developers take special care to show that potential drugs to treat diabetes don’t adversely affect the cardiovascular system [1]. The challenge in implementing that laudable exhortation is that a drug’s long-term health risks may not become clear until thousands or even tens of thousands of people have received it over the course of many years, sometimes even decades.

Now, a large international study, partly funded by NIH, offers some good news: proof-of-principle that “Big Data” tools can help to identify a drug’s potential side effects much earlier in the drug development process [2]. The study, which analyzed vast troves of genomic and clinical data collected over many years from more than 50,000 people with and without diabetes, indicates that anti-diabetes therapies that lower glucose by targeting the product of a specific gene, called GLP1R, are unlikely to boost the risk of cardiovascular disease. In fact, the evidence suggests that such drugs might even offer some protection against heart disease.

Continue reading

Big Data Study Reveals Possible Subtypes of Type 2 Diabetes

Computational model

Caption: Computational model showing study participants with type 2 diabetes grouped into three subtypes, based on similarities in data contained in their electronic health records. Such information included age, gender (red/orange/yellow indicates females; blue/green, males), health history, and a range of routine laboratory and medical tests.
Credit: Dudley Lab, Icahn School of Medicine at Mount Sinai, New York

In recent years, there’s been a lot of talk about how “Big Data” stands to revolutionize biomedical research. Indeed, we’ve already gained many new insights into health and disease thanks to the power of new technologies to generate astonishing amounts of molecular data—DNA sequences, epigenetic marks, and metabolic signatures, to name a few. But what’s often overlooked is the value of combining all that with a more mundane type of Big Data: the vast trove of clinical information contained in electronic health records (EHRs).

In a recent study in Science Translational Medicine  [1], NIH-funded researchers demonstrated the tremendous potential of using EHRs, combined with genome-wide analysis, to learn more about a common, chronic disease—type 2 diabetes. Sifting through the EHR and genomic data of more than 11,000 volunteers, the researchers uncovered what appear to be three distinct subtypes of type 2 diabetes. Not only does this work have implications for efforts to reduce this leading cause of death and disability, it provides a sneak peek at the kind of discoveries that will be made possible by the new Precision Medicine Initiative’s national research cohort, which will enroll 1 million or more volunteers who agree to share their EHRs and genomic information.

Continue reading