Skip to main content

gene editing

Gene Editing in Dogs Boosts Hope for Kids with Muscular Dystrophy

Posted on by

Dystrophin before and after treatment

Caption: A CRISPR/cas9 gene editing-based treatment restored production of dystrophin proteins (green) in the diaphragm muscles of dogs with Duchenne muscular dystrophy.
Credit: UT Southwestern

CRISPR and other gene editing tools hold great promise for curing a wide range of devastating conditions caused by misspellings in DNA. Among the many looking to gene editing with hope are kids with Duchenne muscular dystrophy (DMD), an uncommon and tragically fatal genetic disease in which their muscles—including skeletal muscles, the heart, and the main muscle used for breathing—gradually become too weak to function. Such hopes were recently buoyed by a new study that showed infusion of the CRISPR/Cas9 gene editing system could halt disease progression in a dog model of DMD.

As seen in the micrographs above, NIH-funded researchers were able to use the CRISPR/Cas9 editing system to restore production of a critical protein, called dystrophin, by up to 92 percent in the muscle tissue of affected dogs. While more study is needed before clinical trials could begin in humans, this is very exciting news, especially when one considers that boosting dystrophin levels by as little as 15 percent may be enough to provide significant benefit for kids with DMD.


Creative Minds: Programming Cells to Write Their Own Memoirs

Posted on by

MEMOIR cells

Caption: MEMOIR cells variably activate (cyan). The recorded information is then read out to visualize certain RNA transcripts (red).
Credit: Elowitz and Cai Labs, Caltech, Pasadena, CA

One of the most fascinating challenges in biology is understanding how a single cell divides and differentiates to form a complex, multicellular organism. Scientists can learn a lot about this process by tracking time-lapse images through a microscope. But gazing through a lens has its limitations, especially in the brain and other opaque and inaccessible tissues and organs.

With support from a 2017 NIH Director’s Transformative Research Program, a California Institute of Technology (Caltech) team now has a way around this problem. Rather than watching or digging information out of cells, the team has learned how to program cells to write their own molecular memoirs. These cells store the information right in their own genomic hard drives. Even better, that information is barcoded, allowing researchers to read it out of the cells without dissecting tissue. The programming can be performed in many different cell types, including stem or adult cells in tissues throughout the body.


Snapshots of Life: The Birth of New Neurons

Posted on by

Radial Glia in Oil

Credit: Kira Mosher, University of California, Berkeley

After a challenging day at work or school, sometimes it may seem like you are down to your last brain cell. But have no fear—in actuality, the brains of humans and other mammals have the potential to produce new neurons throughout life. This remarkable ability is due to a specific type of cell—adult neural stem cells—so beautifully highlighted in this award-winning micrograph.

Here you see the nuclei (purple) and arm-like extensions (green) of neural stem cells, along with nuclei of other cells (blue), in brain tissue from a mature mouse. The sample was taken from the subgranular zone of the hippocampus, a region of the brain associated with learning and memory. This zone is also one of the few areas in the adult brain where stem cells are known to reside.


What a Year It Was! A Look Back at Research Progress in 2017

Posted on by

I want to wish everyone a Happy New Year! Hope your 2018 is off to a great start.

Over the holidays, the journal Science published its annual, end-of-the-year list of research breakthroughs, from anthropology to zoology. I always look forward to seeing the list and reflecting on some of the stunning advances reported in the past 12 months. Last year was no exception. Science’s 2017 Breakthrough of the Year, as chosen by its editors, was in the field of astrophysics. Scientists were able to witness the effects of the collision of two neutron stars—large stars with collapsed inner cores—smacking into each other 130 million light years away. How cool is that!

Numbered prominently among the nine other breakthroughs were five from biomedicine: gene therapy, gene editing, cancer immunotherapy, cryo-EM, and biology preprints. All involved varying degrees of NIH support, and all drew great interest from readers. In fact, three of the top four vote-getters in the “People’s Choice” category came from biomedicine. That includes the People’s 2017 Breakthrough of the Year: gene therapy success. And so, in what has become a Director’s Blog tradition, I’ll kick off our new year of posts by taking a closer look at these biomedical breakthroughs—starting with the little girl in the collage above, and moving clockwise around the images:


Creative Minds: Building a CRISPR Gene Drive Against Malaria

Posted on by

Valentino Gantz

Valentino Gantz/Credit: Erik Jepsen

Researchers have used Drosophila melanogaster, the common fruit fly that sometimes hovers around kitchens, to make seminal discoveries involving genetics, the nervous system, and behavior, just to name a few. Could a new life-saving approach to prevent malaria be next? Valentino Gantz, a researcher at the University of California, San Diego, is on a path to answer that question.

Gantz has received a 2016 NIH Director’s Early Independence Award to use Drosophila to hone a new bioengineered tool that acts as a so-called “gene drive,” which spreads a new genetically encoded trait through a population much faster than would otherwise be possible. The lessons learned while working with flies will ultimately be applied to developing a more foolproof system for use in mosquitoes with the hope of stopping the transmission of malaria and potentially other serious mosquito-borne diseases.


Next Page