You’ll Want to See This! “First in Human” Debuts August 10

For over 60 years, the NIH Clinical Center—the world’s largest hospital dedicated to clinical research—has been at the forefront of developing treatments for our most deadly and damaging diseases. It’s here at our “House of Hope” in Bethesda, MD, where, among many other medical firsts, chemotherapy was first used to treat cancerous tumors, gene therapy underwent its first human tests, surgeons first successfully replaced the heart’s mitral valve, and the first anti-viral drug for HIV/AIDS met with early success.

Now, in a Discovery Channel documentary called First in Human, millions of people all around the globe will get a chance to see the doctors, nurses, and other staff of NIH’s remarkable research hospital in action. Narrated by Big Bang Theory star Jim Parsons, the three-part series debuts at 9 p.m.-11 p.m., ET, Thursday, August 10. The second and third segments will air at the same time on August 17 and 24. For a sneak peak, check out the video clip above!

Continue reading

Tumor Scanner Promises Fast 3D Imaging of Biopsies

UW light sheet microscope team

Caption: University of Washington team that developed new light-sheet microscope (center) includes (l-r) Jonathan Liu, Adam Glaser, Larry True, Nicholas Reder, and Ye Chen.
Credit: Mark Stone/University of Washington

After surgically removing a tumor from a cancer patient, doctors like to send off some of the tissue for evaluation by a pathologist to get a better idea of whether the margins are cancer free and to guide further treatment decisions. But for technical reasons, completing the pathology report can take days, much to the frustration of patients and their families. Sometimes the results even require an additional surgical procedure.

Now, NIH-funded researchers have developed a groundbreaking new microscope to help perform the pathology in minutes, not days. How’s that possible? The device works like a scanner for tissues, using a thin sheet of light to capture a series of thin cross sections within a tumor specimen without having to section it with a knife, as is done with conventional pathology. The rapidly acquired 2D “optical sections” are processed by a computer that assembles them into a high-resolution 3D image for immediate analysis.

Continue reading

Precision Oncology: Gene Changes Predict Immunotherapy Response

Cancer Immunotherapy

Caption: Adapted from scanning electron micrograph of cytotoxic T cells (red) attacking a cancer cell (white).
Credits: Rita Elena Serda, Baylor College of Medicine; Jill George, NIH

There’s been tremendous excitement in the cancer community recently about the life-saving potential of immunotherapy. In this treatment strategy, a patient’s own immune system is enlisted to control and, in some cases, even cure the cancer. But despite many dramatic stories of response, immunotherapy doesn’t work for everyone. A major challenge has been figuring out how to identify with greater precision which patients are most likely to benefit from this new approach, and how to use that information to develop strategies to expand immunotherapy’s potential.

A couple of years ago, I wrote about early progress on this front, highlighting a small study in which NIH-funded researchers were able to predict which people with colorectal and other types of cancer would benefit from an immunotherapy drug called pembrolizumab (Keytruda®). The key seemed to be that tumors with defects affecting the “mismatch repair” pathway were more likely to benefit. Mismatch repair is involved in fixing small glitches that occur when DNA is copied during cell division. If a tumor is deficient in mismatch repair, it contains many more DNA mutations than other tumors—and, as it turns out, immunotherapy appears to be most effective against tumors with many mutations.

Now, I’m pleased to report more promising news from that clinical trial of pembrolizumab, which was expanded to include 86 adults with 12 different types of mismatch repair-deficient cancers that had been previously treated with at least one type of standard therapy [1]. After a year of biweekly infusions, more than half of the patients had their tumors shrink by at least 30 percent—and, even better, 18 had their tumors completely disappear!

Continue reading

Snapshots of Life: A Van Gogh Moment for Pancreatic Cancer

Pancreatic Cancer

Credit: Nathan Krah, University of Utah

Last year, Nathan Krah sat down at his microscope to view a thin section of pre-cancerous pancreatic tissue from mice. Krah, an MD/PhD student in the NIH-supported lab of Charles Murtaugh at the University of Utah, Salt Lake City, had stained the tissue with three dyes, each labelling a different target of interest. As Krah leaned forward to look through the viewfinder, he fully expected to see the usual scattershot of color. Instead, he saw enchanting swirls reminiscent of the famous van Gogh painting, The Starry Night.

In this eye-catching image featured in the University of Utah’s 2016 Research as Art exhibition, red indicates a keratin protein found in the cytoskeleton of precancerous cells; green, a cell adhesion protein called E-cadherin; and yellow, areas where both proteins are present. Finally, blue marks the cell nuclei of the abundant immune cells and fibroblasts that have expanded and infiltrated the organ as a tumor is forming. Together, they paint a fascinating new portrait of pancreatic ductal adenocarcinoma (PDAC), the most common form of pancreatic cancer.

Continue reading

Snapshots of Life: Biological Bubble Machine

plasma membrane vesicles

Credit: Chi Zhao, David Busch, Connor Vershel, Jeanne Stachowiak, University of Texas at Austin

As kids, most of us got a bang out of blowing soap bubbles and watching them float around. Biologists have learned that some of our cells do that too. On the right, you can see two cells (greenish yellow) in the process of forming bubbles, or plasma membrane vesicles (PMVs). During this blebbing process, a cell’s membrane temporarily disassociates from its underlying cytoskeleton, forming a tiny pouch that, over the course of about 30 minutes, is “inflated” with a mix of proteins and lipids from inside the cell. After the PMVs are fully filled, these bubble-like structures are pinched off and released, like those that you see in the background. Certain cells constantly release PMVs, along with other types of vesicles, and may use those to communicate with other cells throughout the body.

This particular image, an entrant in the Biophysical Society’s 2017 Art of Science Image Contest, was produced by researchers working in the NIH-supported lab of Jeanne Stachowiak at the University of Texas at Austin. Stachowiak’s group is among the first to explore the potential of PMVs as specialized drug-delivery systems to target cancer and other disorders [1].

Until recently, most efforts to exploit vesicles for therapeutic uses have employed synthetic versions of a different type of vesicle, called an exosome. But Stachowiak and others have realized that PMVs come with certain built-in advantages. A major one is that a patient’s own cells could in theory serve as the production facility.

Continue reading