Twinkle, Twinkle Little Cryo-EM Star

The stars are out and shining this holiday season. But there are some star-shaped structures now under study in the lab that also give us plenty of reason for hope. One of them is a tiny virus called bacteriophage phi-6, which researchers are studying in an effort to combat a similar, but more-complex, group of viruses that can cause life-threatening dehydration in young children.

Thanks to a breakthrough technology called cryo-electron microscopy (cryo-EM), NIH researchers recently captured, at near atomic-level of detail, the 3D structure of this immature bacteriophage phi-6 particle in the process of replication. At the points of its “star,” key proteins (red) are positioned to transport clipped, single-stranded segments of the virus’ own genetic information into its newly made shell, or procapsid (blue). Once inside the procapsid, an enzyme (purple) will copy the segments to make the genetic information double-stranded, while another protein (yellow) will help package them. As the procapsid matures, it undergoes dramatic structural changes.

Continue reading

Creative Minds: Preparing for Future Pandemics

Jonathan Abraham

Jonathan Abraham / Credit: ChieYu Lin

Growing up in Queens, NY, Jonathan Abraham developed a love for books and an interest in infectious diseases. One day Abraham got his hands on a copy of Laurie Garrett’s The Coming Plague, a 1990s bestseller warning of future global pandemics, and he sensed his life’s calling. He would help people around the world survive deadly viral outbreaks, particularly from Ebola, Marburg, and other really bad bugs that cause deadly hemorrhagic fevers.

Abraham, now a physician-scientist at Brigham and Women’s Hospital, Boston, continues to chase that dream. With support from an NIH Director’s 2016 Early Independence Award, Abraham has set out to help design the next generation of treatments to enable more people to survive future outbreaks of viral hemorrhagic fever. His research strategy: find antibodies in the blood of known survivors that helped them overcome their infections. With further study, he hopes to develop purified forms of the antibodies as potentially life-saving treatments for people whose own immune systems may not make them in time. This therapeutic strategy is called passive immunity.

Continue reading

Snapshots of Life: Virus Hunting with Carbon Nanotubes

H5N2 trapped in carbon nanotubes

Credit: Penn State University

The purple pods that you see in this scanning electron micrograph are the H5N2 avian flu virus, a costly threat to the poultry and egg industry and, in very rare instances, a health risk for humans. However, these particular pods are unlikely to infect anything because they are trapped in a gray mesh of carbon nanotubes. Made by linking carbon atoms into a cylindrical pattern, such nanotubes are about 10,000 times smaller than width of a human hair.

The nanotubes above have been carefully aligned on a special type of silicon chip called a carbon-nanotube size-tunable-enrichment-microdevice (CNT-STEM). As described recently in Science Advances, this ultrasensitive device is designed to capture viruses rapidly based on their size, not their molecular characteristics [1]. This unique feature enables researchers to detect completely unknown viruses, even when they are present in extremely low numbers. In proof-of-principle studies, CNT-STEM made it possible to collect and detect viruses in a sample at concentrations 100 times lower than with other methods, suggesting the device and its new approach will be helpful in the ongoing hunt for new and emerging viruses, including those that infect people.

Continue reading

Simplifying HIV Treatment: A Surprising New Lead

CD4+ cells in the gut

Caption: PET/CT imaging reveals a surprisingly high concentration (yellow, light green) of key immune cells called CD4 T cells in the colon (left) of an SIV-infected animal that received antibody infusions along with antiviral treatment. Fewer immune cells were found in the small intestine (right), while the liver (lower left) shows a high level of non-specific signal (orange).
Credit: Byrareddy et al., Science (2016).

The surprising results of an animal study are raising hopes for a far simpler treatment regimen for people infected with the AIDS-causing human immunodeficiency virus (HIV). Currently, HIV-infected individuals can live a near normal life span if, every day, they take a complex combination of drugs called antiretroviral therapy (ART). The bad news is if they stop ART, the small amounts of HIV that still lurk in their bodies can bounce back and infect key immune cells, called CD4 T cells, resulting in life-threatening suppression of their immune systems.

Now, a study of rhesus macaques infected with a close relative of HIV, the simian immunodeficiency virus (SIV), suggests there might be a new therapeutic option that works by a mechanism that has researchers both excited and baffled [1]. By teaming ART with a designer antibody used to treat people with severe bowel disease, NIH-funded researchers report that they have been able to keep SIV in check in macaques for at least two years after ART is stopped. More research is needed to figure out exactly how the new strategy works, and whether it would also work for humans infected with HIV. However, the findings suggest there may be a way to achieve lasting remission from HIV without the risks, costs, and inconvenience associated with a daily regimen of drugs.

Continue reading

Feed a Virus, Starve a Bacterium?

Woman eating hot soup in bed


Yes, the season of colds and flu is coming. You’ve probably heard the old saying “feed a cold and starve a fever.” But is that sound advice? According to new evidence from mouse studies, there really may be a scientific basis for “feeding” diseases like colds and flu that are caused by viruses, as well as for “starving” certain fever-inducing conditions caused by bacteria.

In the latest work, an NIH-funded research team found that providing nutrition to mice infected with the influenza virus significantly improved their survival. In contrast, the exact opposite proved true in mice infected with Listeria, a fever-inducing bacterium. When researchers forced Listeria-infected mice to consume even a small amount of food, they all died.

Continue reading