Skip to main content

public health

COVID-19 Infected Many More Americans in 2020 than Official Tallies Show

Posted on by

Map of U.S.. Counties showing varying levels of COVID-19 infection
Caption: Percentage of people in communities across the United States infected by the novel coronavirus that causes COVID-19 as of December 2020. Credit: Pei S, Nature, 2021.

At the end of last year, you may recall hearing news reports that the number of COVID-19 cases in the United States had topped 20 million. While that number came as truly sobering news, it also likely was an underestimate. Many cases went undetected due to limited testing early in the year and a large number of infections that produced mild or no symptoms.

Now, a recent article published in Nature offers a more-comprehensive estimate that puts the true number of infections by the end of 2020 at more than 100 million [1]. That’s equal to just under a third of the U.S. population of 328 million. This revised number shows just how rapidly this novel coronavirus spread through the country last year. It also brings home just how timely the vaccines have been—and continue to be in 2021—to protect our nation’s health in this time of pandemic.

The work comes from NIH grantee Jeffrey Shaman, Sen Pei, and colleagues, Columbia University, New York. As shown above in the map, the researchers estimated the percentage of people who had been infected with SARS-CoV-2, the novel coronavirus that causes COVID-19, in communities across the country through December 2020.

To generate this map, they started with existing national data on the number of coronavirus cases (both detected and undetected) in 3,142 U.S. counties and major metropolitan areas. They then factored in data from the Centers for Disease Control and Prevention (CDC) on the number of people who tested positive for antibodies against SARS-CoV-2. These CDC data are useful for picking up on past infections, including those that went undetected.

From these data, the researchers calculated that only about 11 percent of all COVID-19 cases were confirmed by a positive test result in March 2020. By the end of the year, with testing improvements and heightened public awareness of COVID-19, the ascertainment rate (the number of infections that were known versus unknown) rose to about 25 percent on average. This measure also varied a lot across the country. For instance, the ascertainment rates in Miami and Phoenix were higher than the national average, while rates in New York City, Los Angeles, and Chicago were lower than average.

How many people were potentially walking around with a contagious SARS-CoV-2 infection? The model helps to answer this, too. On December 31, 2020, the researchers estimate that 0.77 percent of the U.S. population had a contagious infection. That’s about 1 in every 130 people on average. In some places, it was much higher. In Los Angeles, for example, nearly 1 in 40 (or 2.42 percent) had a SARS-CoV-2 infection as they rang in the New Year.

Over the course of the year, the fatality rate associated with COVID-19 dropped, at least in part due to earlier diagnosis and advances in treatment. The fatality rate went from 0.77 percent in April to 0.31 percent in December. While this is great news, it still shows that COVID-19 remains much more dangerous than seasonal influenza (which has a fatality rate of 0.08 percent).

Today, the landscape has changed considerably. Vaccines are now widely available, giving many more people immune protection without ever having to get infected. And yet, the rise of the Delta and other variants means that breakthrough infections and reinfections—which the researchers didn’t account for in their model—have become a much bigger concern.

Looking ahead to the end of 2021, Americans must continue to do everything they can to protect their communities from the spread of this terrible virus. That means getting vaccinated if you haven’t already, staying home and getting tested if you’ve got symptoms or know of an exposure, and taking other measures to keep yourself and your loved ones safe and well. These measures we take now will influence the infection rates and susceptibility to SARS-CoV-2 in our communities going forward. That will determine what the map of SARS-CoV-2 infections will look like in 2021 and beyond and, ultimately, how soon we can finally put this pandemic behind us.

Reference:

[1] Burden and characteristics of COVID-19 in the United States during 2020. Pei S, Yamana TK, Kandula S, Galanti M, Shaman J. Nature. 2021 Aug 26.

Links:

COVID-19 Research (NIH)

Sen Pei (Columbia University, New York)

Jeffrey Shaman (Columbia University, New York)


Tracking the Evolution of a ‘Variant of Concern’ in Brazil

Posted on by

P.1 Variant of SARS-CoV-2 in the center of standard SARS-CoV-2. Arrows move out from the variant

By last October, about three out of every four residents of Manaus, Brazil already had been infected with SARS-CoV-2, the virus that causes COVID-19 [1]. And yet, despite hopes of achieving “herd immunity” in this city of 2.2 million in the Amazon region, the virus came roaring back in late 2020 and early 2021 to cause a second wave of illness and death [2]. How is this possible?

The answer offers a lesson in viral evolution, especially when an infectious virus such as SARS-CoV-2 replicates and spreads through a population largely unchecked. In a recent study in the journal Science, researchers tied the city’s resurgence of SARS-CoV-2 to the emergence and rapid spread of a new SARS-CoV-2 “variant of concern” known as P.1 [3]. This variant carries a unique constellation of mutations that allow it not only to sneak past the human immune system and re-infect people, but also to be about twice as transmissible as earlier variants.

To understand how this is possible, consider that each time the coronavirus SARS-CoV-2 makes copies of itself in an infected person, there’s a chance a mistake will be made. Each mistake can produce a new variant that may go on to make more copies of itself. In most cases, those random errors are of little to no consequence. This is evolution in action.

But sometimes a spelling change can occur that benefits the virus. In the special case of patients with suppressed immune systems, the virus can have ample opportunity to accrue an unusually high number of mutations. Variants carrying beneficial mutations can make more copies of themselves than other variants, allowing them to build their numbers and spread to cause more infection.

At this advanced stage of the COVID-19 pandemic, such rapidly spreading new variants remain cause for serious concern. That includes variants such as B.1.351, which originated in South Africa; B.1.1.7 which emerged in the United Kingdom; and now P.1 from Manaus, Brazil.

In the new study, Nuno Faria and Samir Bhatt, Imperial College London, U.K., and Ester Cerdeira Sabino, Universidade de Sao Paulo, Brazil, and their colleagues sequenced SARS-CoV-2 genomes from 184 patient samples collected in Manaus in November and December 2020. The research was conducted under the auspices of the Brazil-UK Centre for Arbovirus Discovery, Diagnosis, Genomics and Epidemiology (CADDE), a project focused on viral genomics and epidemiology for public health.

Those genomic data revealed the P.1 variant had acquired 17 new mutations. Ten were in the spike protein, which is the segment of the virus that binds onto human cells and the target of current COVID-19 vaccines. In fact, the new work reveals that three of these spike protein mutations make it easier for the P.1 spike to bind the human ACE2 receptor, which is SARS-CoV-2’s preferred entry point.

The first P.1 variant case was detected by genomic surveillance on December 6, 2020, after which it spread rapidly. Through further evolutionary analysis, the team estimates that P.1 must have emerged, undetected for a brief time, in mid-November 2020.

To understand better how the P.1 variant led to such an explosion of new COVID-19 cases, the researchers developed a mathematical model that integrated the genomic data with mortality data. The model suggests that P.1 may be 1.7 to 2.4 times more transmissible than earlier variants. They also estimate that a person previously infected with a variant other than P.1 will have only 54 percent to 79 percent protection against a subsequent infection with P.1.

The researchers also observed an increase in mortality following the emergence of the P.1 variant. However, it’s not yet clear if that’s an indication P.1 is inherently more deadly than earlier variants. It’s possible the increased mortality is related primarily to the extra stress on the healthcare system in Manaus from treating so many people with COVID-19.

These findings are yet another reminder of the importance of genomic surveillance and international data sharing for detecting and characterizing emerging SARS-CoV-2 variants quickly. It’s worth noting that at about the same time this variant was detected in Brazil, it also was reported in four individuals who had traveled to Brazil from Japan. The P.1 variant continues to spread rapidly across Brazil. It has also been detected in more than 37 countries [4], including the United States, where it now accounts for more than 1 percent of new cases [5].

No doubt you are wondering what this means for vaccines, such as the Pfizer and Moderna mRNA vaccines, that have been used to immunize (at least one dose) over 140 million people in the United States. Here the news is encouraging. Serum from individuals who received the Pfizer vaccine had titers of neutralizing antibodies that were only slightly reduced for P.1 compared to the original SARS-CoV-2 virus [6]. Therefore, the vaccine is predicted to be highly protective. This is another example of a vaccine providing more protection than a natural infection.

The United States has made truly remarkable progress in combating COVID-19, but we must heed this lesson from Manaus: this terrible pandemic isn’t over just yet. While the P.1 variant remains at low levels here for now, the “U.K. variant” B.1.1.7 continues to spread rapidly and now is the most prevalent variant circulating in the U.S., accounting for 44 percent of new cases [6]. Fortunately, the mRNA vaccines also work well against B.1.1.7.

We must continue to do absolutely everything possible, individually and collectively, to prevent these new SARS-CoV-2 variants from slowing or even canceling the progress made over the last year. We need to remain vigilant for just a while longer, while encouraging our friends, neighbors, and loved ones to get vaccinated.

References:

[1] Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Buss, L. F., C. A. Prete, Jr., C. M. M. Abrahim, A. C. Dye, V. H. Nascimento, N. R. Faria and E. C. Sabino et al. (2021). Science 371(6526): 288-292.

[2] Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Sabino EC, Buss LF, Carvalho MPS, Prete Jr CCA, Crispim MAE, Fraiji NA, Pereira RHM, Paraga KV, Peixoto PS, Kraemer MUG, Oikawa MJ, Salomon T, Cucunuba ZM, Castro MC, Santos AAAS, Nascimento VH, Pereira HS, Ferguson NM, Pybus OG, Kucharski A, Busch MP, Dye C, Faria NR Lancet. 2021 Feb 6;397(10273):452-455.

[3] Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Faria NR, Mellan TA, Whittaker C, Claro IM, Fraiji NA, Carvalho MDPSS, Pybus OG, Flaxman S, Bhatt S, Sabino EC et al. Science. 2021 Apr 14:eabh2644.

[4] GRINCH Global Report Investigating novel coronavirus haplotypes. PANGO Lineages.

[5] COVID Data Tracker. Variant Proportions. Centers for Disease Control and Prevention.

[6] Antibody evasion by the P.1 strain of SARS-CoV-2. Dejnirattisai W, Zhou D, Supasa P, Liu C, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR, et al. Cell. 2021 Mar 30:S0092-8674(21)00428-1.

Links:

COVID-19 Research (NIH)

Brazil-UK Centre for Arbovirus Discovery, Diagnosis, Genomics and Epidemiology (CADDE)

Nuno Faria (Imperial College, London, U.K.)

Samir Bhatt (Imperial College)

Ester Cerdeira Sabino (Universidade de Sao Paulo, Brazil)

NIH Support: National Institute of Allergy and Infectious Diseases


Following COVID-19 Vaccines Across the United States

Posted on by

Vaccine Tracker

Recently, there is a new and very hopeful COVID-19 number for everyone to track: the total number of vaccine doses that have been administered in the United States. If 80 percent of Americans roll up their sleeves in the coming months and accept COVID-19 vaccinations, we can greatly slow the spread of the novel coronavirus in our communities and bring this horrible pandemic to an end in 2021.

So far, more than 20 million people in our country have received one or two doses of either the Pfizer or Moderna vaccine. While this number is lower than initially projected for a variety of logistical reasons, we’re already seeing improvements in the distribution system that has made it possible to get close to 1 million doses administered per day.

If you want to keep track of the vaccine progress in your state over the coming weeks, it’s now pretty easy to do online. A fine resource is the vaccine information on the Centers for Disease Control and Prevention (CDC) COVID Data Tracker. It offers an interactive state-by-state map, as well as data on vaccinations in long-term care facilities. Keep in mind that there’s a delay of three to five days in reporting actual vaccinations from the states.

There’s also a lot of useful information on the Johns Hopkins Coronavirus Resource Center’s Vaccine Tracker. Posting the daily updates is a team, led by William Moss, that draws on the expertise of data scientists, analysts, programmers, and researchers. The Hopkins team gathers its vaccination data from each state’s official dashboard, webpages, press releases, or wherever cumulative numbers are reported. Not all states publish the same vaccine information, and that’s what can make the Vaccine Tracker so challenging to compile.

The Hopkins team now presents on its homepage the top 10 U. S. states and territories to vaccinate fully the highest percentage of their residents. With another click, there’s also a full rundown of vaccine administration by state and territory, plus the District of Columbia. The site also links to lots of other information about COVID-19—including cases, testing, contact tracing, and an interactive tool about vaccine development.

In uncertain times, knowledge can be a source of comfort. That’s what makes these interactive COVID-19 resources so helpful and empowering. They show that, with time, safe and effective COVID-19 vaccines will indeed coming to everyone. I hope that you will accept your vaccine, like I did when given the opportunity. However, until we get to the point where most Americans are immunized, we must stay vigilant and keep up our tried-and-true public health measures such as wearing masks, limiting physical interactions (especially indoors), and washing our hands.

Links:

COVID-19 Research (NIH)

CDC COVID Data Tracker (Centers for Disease Control and Prevention, Atlanta)

Coronavirus Resource Center (Johns Hopkins University School of Medicine)

William Moss (Johns Hopkins University, Baltimore)

International Vaccine Access Center (Johns Hopkins Bloomberg School of Public Health, Baltimore)



Face Coverings Could Save 130,000 American Lives from COVID-19 by March

Posted on by

Wearing a mask
Credit: Diane Baker

The coronavirus disease 2019 (COVID-19) pandemic has already claimed the lives of more than 230,000 Americans, the population of a mid-sized U.S. city. As we look ahead to winter and the coming flu season, the question weighing on the minds of most folks is: Can we pull together to contain the spread of this virus and limit its growing death toll?

I believe that we can, but only if each of us gets fully engaged with the public health recommendations. We need all Americans to do the right thing and wear a mask in public to protect themselves and their communities from spreading the virus. Driving home this point is a powerful new study that models just how critical this simple, low-cost step will be this winter and through the course of this pandemic [1].

Right now, it’s estimated that about half of Americans always wear a mask in public. According to the new study, published in Nature Medicine, if this incomplete rate of mask-wearing continues and social distancing guidelines are not adhered to, the total number of COVID-19 deaths in the United States could soar to more than 1 million by the end of February.

However, the model doesn’t accept that we’ll actually end up at this daunting number. It anticipates that once COVID mortality reaches a daily threshold of 8 deaths per 1 million citizens, U.S. states would re-instate limits on social and economic activity—as much of Europe is now doing. If so, the model predicts that by March, such state-sanctioned measures would cut the projected number of deaths in half to about 510,000—though that would still add another 280,000 lives lost to this devastating virus.

The authors, led by Christopher Murray, Institute of Health Metrics and Evaluations, University of Washington School of Medicine, Seattle, show that we can do better than that. But doing better will require action by all of us. If 95 percent of people in the U.S. began wearing masks in public right now, the death toll would drop by March from the projected 510,000 to about 380,000.

In other words, if most Americans pulled together to do the right thing and wore a mask in public, this simple, selfless act would save more than 130,000 lives in the next few months alone. If mask-wearers increased to just 85 percent, the model predicts it would save about 96,000 lives across the country.

What’s important here aren’t the precise numbers. It’s the realization that, under any scenario, this pandemic is far from over, and, together, we have it within our power to shape what happens next. If more people make the decision to wear masks in public today, it could help to delay—or possibly even prevent—the need for future shutdowns. As such, the widespread use of face coverings has the potential to protect lives while also minimizing further damage to the economy and American livelihoods. It’s a point that NIH’s Anthony Fauci and colleagues presented quite well in a recent commentary in JAMA [2].

As we anxiously await the approved vaccines for COVID-19 and other advances in its prevention and treatment, the life-saving potential of face coverings simply can’t be overstated. I know that many people are tired of this message, and, unfortunately, mask-wearing has been tangled up in political perspectives at this time of deep divisions in our country.

But think about it in the same way you think about putting on your seat belt—a minor inconvenience that can save lives. I’m careful to wear a mask outside my home every time I’m out and about. But, ultimately, saving lives and livelihoods as we head into these winter months will require a collective effort from all of us.

To do so, each of us needs to follow these three W’s: Wear a mask. Watch your distance (stay 6 feet apart). Wash your hands often.

References:

[1] Modeling COVID-19 scenarios for the United States. IHME COVID-19 Forecasting Team. Nat Med. 2020 Oct 23.

[2] Preventing the spread of SARS-CoV-2 with masks and other “low-tech” interventions. Lerner AM, Folkers, GK, Fauci AS. JAMA. 2020 October 26.

Links:

Coronavirus (COVID-19) (NIH)

Institute for Health Metrics and Evaluations (University of Washington School of Medicine, Seattle)


NIH at 80: Sharing a Timeless Message from President Roosevelt

Posted on by

This Saturday, October 31, marks an important milestone in American public health: the 80th anniversary of President Franklin Delano Roosevelt’s dedication of the campus of the National Institutes of Health (NIH) in Bethesda, MD. The President’s stirring speech, delivered from the steps of NIH’s brand-new Administration Building (now called Building 1), was much more than a ribbon-cutting ceremony. It gave voice to NIH’s commitment to using the power of science “to do infinitely more” for the health of all people with “no distinctions of race, of creed, or of color.”

“We cannot be a strong nation unless we are a healthy nation. And so, we must recruit not only men and materials, but also knowledge and science in the service of national strength,” Roosevelt told the crowd of about 3,000. To get a sense of what it was like to be there on that historic day, I encourage you to check out the archival video footage above from the National Archives and Records Administration (NARA).

These words from our 32nd President are especially worth revisiting for their enduring wisdom during a time of national crisis. In October 1940, with World War II raging overseas, the United States faced the prospect of defending its shores and territories from foreign forces. Yet, at the same time as he was bolstering U.S. military capacity, Roosevelt emphasized that it was also essential to use biomedical research to shore up our nation’s defenses against the threats of infectious disease. In a particularly prescient section of the speech, he said: “Now that we are less than a day by plane from the jungle-type yellow fever of South America, less than two days from the sleeping sickness of equatorial Africa, less than three days from cholera and bubonic plague, the ramparts we watch must be civilian in addition to military.”

Today, in the midst of another national crisis—the COVID-19 pandemic—a similar vision is inspiring the work of NIH. With the aim of defending the health of all populations, we are supporting science to understand the novel coronavirus that causes COVID-19 and to develop tests, treatments, and vaccines for this disease that has already killed more than 225,000 Americans and infected more than 8.6 million.

As part of the dedication ceremony, Roosevelt thanked the Luke and Helen Wilson family for donating their 70-acre estate, “Tree Tops,” to serve as a new home for NIH. (Visitors to Wilson Hall in Building 1 will see portraits of the Wilsons.) Founded in 1887, NIH had previously been housed in a small lab on Staten Island, and then in two cramped lab buildings in downtown Washington, D.C. The move to Bethesda, with NIH’s first six buildings already dotting the landscape as Roosevelt spoke, gave the small agency room to evolve into what today is the world’s largest supporter of biomedical research.

Yet, as FDR gazed out over our fledging campus on that autumn day so long ago, he knew that NIH’s true mission would extend far beyond simply conducting science to providing much-needed hope to humans around the world. As he put it in his closing remarks: “I voice for America and for the stricken world, our hopes, our prayers, our faith, in the power of man’s humanity to man.”

On the 80th anniversary of NIH’s move to Bethesda, I could not agree more. Our science—and our humanity—will get us through this pandemic and show the path forward to brighter days ahead.

Links:

Who We Are: History (NIH)

Office of NIH History and Stetten Museum (NIH)

70 Acres of Science” (Office of NIH History)

Coronavirus (COVID-19) (NIH)


Next Page