LabTV: Curious About Fatigue Related to Cancer Therapy

Leorey Saligan

As this LabTV profile of an outstanding nurse-scientist shows, there are many different paths to a career in biomedical research. Leorey Saligan grew up in the Philippines, where the challenges and rewards of caring for sick family members inspired him to become a nurse. His first job was at a nursing home in Midland, TX, and the next at a nearby hospital. Later, Saligan moved to Norfolk, VA, where as a nurse practitioner he began caring for people with sarcoidosis, an inflammatory disease that affects several organ systems.

Saligan went on to pursue a Ph.D. in nursing at Virginia’s Hampton University, writing his dissertation on the chronic vision problems associated with sarcoidosis. To gather more data on such problems, he joined NIH’s National Institute of Nursing Research in Bethesda, MD, and, with the help of colleagues, carried out a clinical study. To Saligan’s surprise, the data showed that fatigue, rather than poor vision, was the top concern of people with sarcoidosis. That discovery sparked his research interest in fatigue—an interest now focused on the intense, often debilitating fatigue that many people with cancer experience both during and after treatment, particularly radiation therapy.

Like people with sarcoidosis, people undergoing cancer treatment report that fatigue is the symptom that most negatively affects their quality of life. Many find the fatigue so distressing that their treatment regimens have to be reduced or even halted—actions that may have a negative effect on the cancer-killing power of such treatments. And, for some folks, the fatigue can be long lasting, persisting for months or even years after cancer therapy ends.

By analyzing blood and tissue samples donated by volunteers who are undergoing or who have undergone cancer treatments, Saligan and colleagues from NIH’s Clinical Center and National Cancer Institute have uncovered several promising leads in their effort to gain a better understanding of the molecular mechanisms of treatment-related fatigue. He is also working with behavioral researchers to explore the relationship of fatigue with pain, depression, anxiety, sleep disturbances, and other symptoms. Ultimately, this NIH tenure-track investigator (who also happens to be an officer in the U.S. Public Health Service) wants to see this scientific knowledge translated into effective ways of treating or preventing the fatigue that is a most unfortunate side effect of potentially life-saving cancer therapies.

Links:

LabTV

Leorey N. Saligan (National Institute of Nursing Research/NIH)

Investigating Molecular-Genetic Correlates of Fatigue Experienced by Cancer Patients Receiving Treatment (ClinicalTrials.gov/NIH)

Effect of Ketamine on Fatigue Following Cancer Therapy (ClinicalTrials.gov/NIH)

Science Careers (National Institute of General Medical Sciences/NIH)

Careers Blog (Office of Intramural Training/NIH)

Scientific Careers at NIH

 

Gain Without Pain: New Clues for Analgesic Design

A mouse and a scorpion sharing a space and facing nose-to-nose.

Photo Credit: Matthew Rowe, Michigan State University

If you’re a southern grasshopper mouse, nothing beats a delicious snack of scorpion. But what, you might ask, prevents that from being a painful or even fatal event?  Well, this native of the Arizona desert has evolved an amazing resistance to the stings of the bark scorpion—stings so painful and toxic they kill house mice and other rodents of similar size.

Why am I sharing this bit of natural history? Well, it turns out that by studying the grasshopper mouse and its unusual diet, NIH-funded researchers at the Indiana University School of Medicine and collaborators at the University of Texas, Austin, have identified a new target on nerve fibers that could lead to more effective and less addictive pain medications for humans.

Continue reading

How Does Acute Pain Become Chronic?

Woman holding her headChronic pain is a major medical problem, affecting as many as 100 million Americans, robbing them of a full sense of well-being, disrupting their ability to work and earn a living, and causing untold suffering for the patient and family. This condition costs the country an estimated $560-635 billion annually—a staggering economic burden [1]. Worst of all, chronic pain is often resistant to treatment. NIH launched the Grand Challenge on Chronic Pain [2] to investigate how acute pain (which is part of daily experience) evolves into a chronic condition and what biological factors contribute to this transition.

But you may wonder: what, exactly, is the difference between acute and chronic pain? Continue reading

Reprogramming Genes to Keep Joints Healthy

 

Caption: [Left] The knee joint of a normal mouse that endured an ACL-type injury. The injury triggered osteoarthritis and caused the cartilage on the femur (red) and tibia (green) to degrade, allowing the bones to sandwich together. [Right] This is the knee joint of a mouse that received gene therapy after the ACL injury. The cartilage is thick and healthy, and covers the bones completely, providing a cushion.

Credit: Brendan Lee and Zhechao Ruan, Department of Molecular and Human Genetics,
Baylor College of Medicine, Houston, TX

Our joints are pretty amazing marvels of engineering, but they don’t last forever. As we age, or if we suffer certain injuries, the smooth, slippery white cartilage covering the ends of our bones begins to fray and degrade. This causes osteoarthritis (OA), or ‘wear-and-tear’ arthritis. As the cartilage thins and disappears, the bones can even grow spurs that grate against each other, causing swelling and pain. It’s a major cause of disability, and there’s currently no cure—other than joint replacement, which is a pretty big deal and isn’t available for all joints. About 27 million Americans already have osteoarthritis; about 1 in 2 will suffer from some form of the disease over their lifetime. Those are lousy odds.

Continue reading

Ancient Drug Meets Personalized Medicine

It’s pretty amazing to me that we’re still discovering new uses for a drug as old as aspirin. The active metabolite of aspirin—salicylic acid—has been used to treat ailments for several millennia. In fact, the ancient Egyptians and Greeks even used teas and other potions brewed from the bark of the willow tree, which is rich in salicylic acid, to treat their fevers, headaches, and pains.

photo of round white pills marked ASPIRINToday, as many of you may already know, low-dose aspirin can play a key role preventing heart attacks and strokes; it’s often prescribed as a daily therapy for people who’ve suffered a heart attack or are at high risk of one. But it doesn’t stop there. Scientists are now exploring whether this pharmaceutical multitasker can also suppress cancer.

In recent trials, researchers have been testing aspirin for people with colon or colorectal cancer, the third most deadly cancer in the United States. However, they weren’t sure who would benefit. Recently, NIH-supported researchers based in Boston showed that taking aspirin boosted survival among patients diagnosed with colon cancer. But here’s the 21st century catch: the aspirin only had an impact in the 15-20% of patients whose tumors carried a mutation in the PIK3CA gene. (Note: This is not a mutation we inherit from our parents, it is a harmful mutation that arises spontaneously in tumors during the course of cancer development.)

Continue reading