Skip to main content

coronavirus

Months After Recovery, COVID-19 Survivors Often Have Persistent Lung Trouble

Posted on by

Lung function test
Caption: Testing breathing capacity with a spirometer. Credit: iStock/Koldunov

The pandemic has already claimed far too many lives in the United States and around the world. Fortunately, as doctors have gained more experience in treating coronavirus disease 2019 (COVID-19), more people who’ve been hospitalized eventually will recover. This raises an important question: what does recovery look like for them?

Because COVID-19 is still a new condition, there aren’t a lot of data out there yet to answer that question. But a recent study of 55 people recovering from COVID-19 in China offers some early insight into the recovery of lung function [1]. The results make clear that—even in those with a mild-to-moderate infection—the effects of COVID-19 can persist in the lungs for months. In fact, three months after leaving the hospital about 70 percent of those in the study continued to have abnormal lung scans, an indication that the lungs are still damaged and trying to heal.

The findings in EClinicalMedicine come from a team in Henan Province, China, led by Aiguo Xu, The First Affiliated Hospital of Zhengzhou University; Yanfeng Gao, Zhengzhou University; and Hong Luo, Guangshan People’s Hospital. They’d heard about reports of lung abnormalities in patients discharged from the hospital. But it wasn’t clear how long those problems stuck around.

To find out, the researchers enrolled 55 men and women who’d been admitted to the hospital with COVID-19 three months earlier. Some of the participants, whose average age was 48, had other health conditions, such as diabetes or heart disease. But none had any pre-existing lung problems.

Most of the patients had mild or moderate respiratory illness while hospitalized. Only four of the 55 had been classified as severely ill. Fourteen patients required supplemental oxygen while in the hospital, but none needed mechanical ventilation.

Three months after discharge from the hospital, all of the patients were able to return to work. But they continued to have lingering symptoms of COVID-19, including shortness of breath, cough, gastrointestinal problems, headache, or fatigue.

Evidence of this continued trouble also showed up in their lungs. Thirty-nine of the study’s participants had an abnormal result in their computed tomography (CT) lung scan, which creates cross-sectional images of the lungs. Fourteen individuals (1 in 4) also showed reduced lung function in breathing tests.

Interestingly, the researchers found that those who went on to have more lasting lung problems also had elevated levels of D-dimer, a protein fragment that arises when a blood clot dissolves. They suggest that a D-dimer test might help to identify those with COVID-19 who would benefit from pulmonary rehabilitation to rebuild their lung function, even in the absence of severe respiratory symptoms.

This finding also points to the way in which the SARS-CoV-2 virus seems to enhance a tendency toward blood clotting—a problem addressed in our Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) public-private partnership. The partnership recently initiated a trial of blood thinners. That trial will start out by focusing on newly diagnosed outpatients and hospitalized patients, but will go on to include a component related to convalescence.

Moving forward, it will be important to conduct larger and longer-term studies of COVID-19 recovery in people of diverse backgrounds to continue to learn more about what it means to survive COVID-19. The new findings certainly indicate that for many people who’ve been hospitalized with COVID-19, regaining normal lung function may take a while. As we learn even more about the underlying causes and long-term consequences of this new infectious disease, let’s hope it will soon lead to insights that will help many more COVID-19 long-haulers and their concerned loved ones breathe easier.

Reference:

[1] Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. Zhao YM, Shang YM, Song WB, Li QQ, Xie H, Xu QF, Jia JL, Li LM, Mao HL, Zhou XM, Luo H, Gao YF, Xu AG. EClinicalMedicine.2020 Aug 25:100463

Links:

Coronavirus (COVID-19) (NIH)

How the Lungs Work (National Heart, Lung, and Blood Institute/NIH)

Computed Tomography (CT) (National Institute of Biomedical Imaging and Bioengineering/NIH)

Zhengzhou University (Zhengzhou City, Henan Province, China)

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) (NIH)


Citizen Scientists Take on the Challenge of Long-Haul COVID-19

Posted on by

Woman frustrated while working
Credit: iStock/Poike

Coronaviruses are a frequent cause of the common cold. Most of us bounce back from colds without any lasting health effects. So, you might think that individuals who survive other infectious diseases caused by coronaviruses—including COVID-19—would also return to normal relatively quickly. While that can be the case for some people, others who’ve survived even relatively mild COVID-19 are experiencing health challenges that may last for weeks or even months. In fact, the situation is so common, that some of these folks have banded together and given their condition a name: the COVID “long-haulers.”

Among the many longer-term health problems that have been associated with COVID-19 are shortness of breath, fatigue, cognitive issues, erratic heartbeat, gastrointestinal issues, low-grade fever, intolerance to physical or mental activity, and muscle and joint pains. COVID-19 survivors report that these symptoms flair up unpredictably, often in different combinations, and can be debilitating for days and weeks at a time. Because COVID-19 is such a new disease, little is known about what causes the persistence of symptoms, what is impeding full recovery, or how to help the long-haulers.

More information is now emerging from the first detailed patient survey of post-COVID syndrome, also known as Long COVID [1]. What’s unique about the survey is that it has been issued by a group of individuals who are struggling with the syndrome themselves. These citizen scientists, who belong to the online Body Politic COVID-19 Support Group, decided to take matters into their own hands. They already had a pretty good grip on what sort of questions to ask, as well as online access to hundreds of long-haulers to whom they could pose the questions.

The citizen scientists’ group, known as the Patient-led Research for COVID-19, brought a lot of talent and creativity to the table. Members reside in the United States, Canada, and England, and none have ever met face to face. But, between their day jobs, managing time differences, and health challenges, each team member spends about 20 hours per week working on their patient-led research, and are now putting the final touches on a follow-up survey that will get underway in the next few weeks.

For their first survey, the group members faced the difficult decision of whom to contact. First, they needed to define long hauler. For that, they decided to target people whose symptoms persisted for more than 2 weeks after their initial recovery from COVID-19. The 640 individuals who responded to the survey were predominately white females between the ages of 30 to 49 who lived in the United States. The members said that the gender bias may stem from women being more likely to join support groups and complete surveys, though there may be a gender component to Long COVID as well. About 10 percent of respondents reported that they had ultimately recovered from this post-COVID syndrome.

Another important issue revolved around COVID-19 testing. Most long-haulers in the online group had gotten sick in March and April, but weren’t so sick that they needed to be hospitalized. Because COVID-19 testing during those months was often limited to people hospitalized with severe respiratory problems, many long-haulers with mild or moderate COVID-like symptoms weren’t tested. Others were tested relatively late in the course of their illness, which can increase the likelihood of false negatives.

The team opted to cast a wide investigative net, concluding that limiting its data to only people who tested positive for COVID-19 might lead to the loss of essential information on long-haulers. It turns out that half of the respondents hadn’t been tested for SARS-CoV-2, the virus that causes COVID-19. The other half was divided almost equally between those who tested positive and those who tested negative. Here are some highlights of the survey’s findings:

Top 10 Symptoms: Respondents were asked to rank their most common symptoms and their relative severity. From highest to lowest, they were: mild shortness of breath, mild tightness of chest, moderate fatigue, mild fatigue, chills or sweats, mild body aches, dry cough, elevated temperature (98.8-100), mild headache, and brain fog/concentration challenges. Highlighting the value of patient-led research, the team was able to assemble an initial list of 62 symptoms that long-haulers often discuss in support groups. The survey revealed common symptoms that have been greatly underreported in the media, such as neurological symptoms. These include brain fog, concentration challenges, and dizziness.

Making a Recovery: Of the 60 respondents who had recovered, the average time to recovery was 27 days. The respondents who had not recovered had managed their symptoms for 40 days on average, with most dealing with health problems for 5 to 7 weeks. The report shows that the chance of full recovery by day 50 is less than 20 percent.

Exercise Capacity: About 65 percent of respondents now consider themselves mostly sedentary. Most had been highly physically active before developing COVID-19. Many long-haulers expressed concern that overexertion causes relapses

Testing. Respondents who reported testing positive for SARS-CoV-2 were tested on average earlier in their illness (by day 10) than those who reported testing negative (by day 16). The team noted that their findings parallel those in a recent published scientific study, which found false-negative rates for current PCR-based assays rose as the time between SARS-CoV-2 infection and testing increased [2]. In that published study, by day 21, the false-negative rate reached 66 percent. Only two symptoms (loss of smell and loss of taste) occurred more frequently in respondents who tested positive; the other 60 symptoms were statistically the same between groups. The citizen scientists speculate that testing is not capturing a subset of COVID patients, and more investigation is required.

Since issuing their survey results on May 11, the team has met with staff from the Centers for Disease Control and Prevention and the World Health Organization. Their work also been mentioned in magazine articles and even cited in some papers published in scientific journals.

In their next survey, these citizen scientists hope to fill in gaps in their first report, including examining antibody testing results, neurological symptoms, and the role of mental health. To increase geographic and demographic diversity, they will also translate the survey into 10 languages. If you’re a COVID-19 long-hauler and would like to find out how to get involved, there’s still time to take part in the next survey.

References:

[1] “What Does COVID-19 Recovery Actually Look Like?” Patient-led Research for COVID-19. May 11, 2020.

[2] Variation in False-Negative Rate of Reverse Transcriptase Polymerase Chain Reaction-Based SARS-CoV-2 Tests by Time Since Exposure. Kucirka LM, Lauer SA, Laeyendecker O, Boon D, Lessler J. Ann Intern Med. 2020 Aug 18;173(4):262-267.

Links:

Coronavirus (COVID-19) (NIH)

Patient-led Research for COVID-19


Study Ties COVID-19-Related Syndrome in Kids to Altered Immune System

Posted on by

Very sick child
Credit: iStock/Sasiistock

Most children infected with SARS-CoV-2, the virus that causes COVID-19, develop only a mild illness. But, days or weeks later, a small percentage of kids go on to develop a puzzling syndrome known as multisystem inflammatory syndrome in children (MIS-C). This severe inflammation of organs and tissues can affect the heart, lungs, kidneys, brain, skin, and eyes.

Thankfully, most kids with MIS-C respond to treatment and make rapid recoveries. But, tragically, MIS-C can sometimes be fatal.

With COVID-19 cases in children having increased by 21 percent in the United States since early August [2], NIH and others are continuing to work hard on getting a handle on this poorly understood complication. Many think that MIS-C isn’t a direct result of the virus, but seems more likely to be due to an intense autoimmune response. Indeed, a recent study in Nature Medicine [1] offers some of the first evidence that MIS-C is connected to specific changes in the immune system that, for reasons that remain mysterious, sometimes follow COVID-19.

These findings come from Shane Tibby, a researcher at Evelina London Children’s Hospital, London. United Kingdom; Manu Shankar-Hari, a scientist at Guy’s and St Thomas’ NHS Foundation Trust, London; and colleagues. The researchers enlisted 25 children, ages 7 to 14, who developed MIS-C in connection with COVID-19. In search of clues, they examined blood samples collected from the children during different stages of their care, starting when they were most ill through recovery and follow-up. They then compared the samples to those of healthy children of the same ages.

What they found was a complex array of immune disruptions. The children had increased levels of various inflammatory molecules known as cytokines, alongside raised levels of other markers suggesting tissue damage—such as troponin, which indicates heart muscle injury.

The neutrophils, monocytes, and other white blood cells that rapidly respond to infections were activated as expected. But the levels of certain white blood cells called T lymphocytes were paradoxically reduced. Interestingly, despite the low overall numbers of T lymphocytes, particular subsets of them appeared activated as though fighting an infection. While the children recovered, those differences gradually disappeared as the immune system returned to normal.

It has been noted that MIS-C bears some resemblance to an inflammatory condition known as Kawasaki disease, which also primarily affects children. While there are similarities, this new work shows that MIS-C is a distinct illness associated with COVID-19. In fact, only two children in the study met the full criteria for Kawasaki disease based on the clinical features and symptoms of their illness.

Another recent study from the United Kingdom, reported several new symptoms of MIS-C [3]. They include headaches, tiredness, muscle aches, and sore throat. Researchers also determined that the number of platelets was much lower in the blood of children with MIS-C than in those without the condition. They proposed that evaluating a child’s symptoms along with his or her platelet level could help to diagnose MIS-C.

It will now be important to learn much more about the precise mechanisms underlying these observed changes in the immune system and how best to treat or prevent them. In support of this effort, NIH recently announced $20 million in research funding dedicated to the development of approaches that identify children at high risk for developing MIS-C [4].

The hope is that this new NIH effort, along with other continued efforts around the world, will elucidate the factors influencing the likelihood that a child with COVID-19 will develop MIS-C. Such insights are essential to allow doctors to intervene as early as possible and improve outcomes for this potentially serious condition.

References:

[1] Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Carter MJ, Fish M, Jennings A, Doores KJ, Wellman P, Seow J, Acors S, Graham C, Timms E, Kenny J, Neil S, Malim MH, Tibby SM, Shankar-Hari M. Nat Med. 2020 Aug 18.

[2] Children and COVID-19: State-Level Data Report. American Academy of Pediatrics. August 24, 2020.

[3] Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study. Swann OV, Holden KA, Turtle L, Harrison EW, Docherty AB, Semple MG, et al. Br Med J. 2020 Aug 17.

[4] NIH-funded project seeks to identify children at risk for MIS-C. NIH. August 7, 2020.

Links:

Coronavirus (COVID-19) (NIH)

Kawasaki Disease (Genetic and Rare Disease Information Center/National Center for Advancing Translational Sciences/NIH)

Shane Tibby (Evelina London Children’s Hospital, London)

Manu Shankar-Hari (King’s College, London)

NIH Support: Eunice Kennedy Shriver National Institute of Child Health and Human Development; Office of the Director; National Heart, Lung, and Blood Institute; National Institute of Allergy and Infectious Diseases; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institute on Drug Abuse; National Institute of Minority Health and Health Disparities; Fogarty International Center


Masks Save Lives

Posted on by

Masks save lives

Reminding others that “masks save lives” isn’t just sound advice. It’s a scientific fact that wearing one in public can help to slow the spread of SARS-CoV-2, the virus responsible for the coronavirus disease 2019 (COVID-19) pandemic.

I’m very careful to wear a mask outside my home whenever I’m out and about. I do it not necessarily to protect myself, but to protect others. If by chance I’ve been exposed to the virus and am currently incubating it, I wouldn’t want to spread it to other people. And any of us could be an unknowing superspreader. We owe it to everyone we encounter, especially those who are more vulnerable, to protect them. As my NIH colleague Tony Fauci recently demonstrated, it’s possible to wear your mask even while you’re outside exercising.

But there are still skeptics around. So, just how much does a facial covering protect those around you? Quite a bit, according to researchers who created a sophisticated mathematical model to take a more detailed look [1]. Their model shows that even if a community universally adopted a crude cloth covering that’s far less than 100 percent protective against the virus, this measure alone could significantly help to reduce deaths.

These findings, funded partly by NIH, were published recently in Nature Communications. They come from Colin Worby, Broad Institute of MIT and Harvard, Cambridge, MA, and Hsiao-Han Chang, National Tsing Hua University, Taiwan.

The researchers noted several months ago that recommendations on wearing a mask varied across the United States and around the world. To help guide policymakers, the researchers simulated outbreaks in a closed, randomly interacting population in which the supply and effectiveness of crude cloth or disposable, medical-grade masks varied.

Under different outbreak scenarios and mask usages, the researchers calculated the total numbers of expected SARS-CoV-2 infections and deaths from COVID-19. Not surprisingly, they found that the total number of deaths and infections declined as the availability and effectiveness of face masks increased.

The researchers’ model primarily considered the distribution of medical-grade, surgical masks. But because such masks are currently available in limited supply, they must be prioritized for use by health care workers and others at high risk. The researchers go on to note that the World Health Organization and others now recommend wearing homemade face coverings in public, especially in places where the virus is spreading. While it’s true the ability of these face coverings to contain the virus is more limited than medical-grade masks, they can help and will lead to many fewer deaths.

Another recent paper also suggests that while wearing a mask is primarily intended to prevent the wearer from infecting others, it may also help lower the dose, or inoculum, of SARS-CoV-2 that the wearer might receive from others, resulting in milder or asymptomatic infections [2]. If correct, that’s another great reason to wear a mask.

Already, more than 175,000 people in the United States have died from COVID-19. The latest estimates [3] from the Institute for Health Metrics and Evaluation (IHME) at the University of Washington’s School of Medicine, Seattle, predict that the COVID-19 death toll in the U.S. may reach nearly 300,000 by December 1.

But that doesn’t have to happen. As this new study shows, face coverings—even those that are far from perfect—really can and do save lives. In fact, IHME data also show that consistent mask-wearing—starting today—could save close to 70,000 lives in the months to come. Saving those lives is up to all of us. Don’t leave home without your mask.

References:

[1] Face mask use in the general population and optimal resource allocation during the COVID-19 pandemic. Worby CJ, Chang HH. Nat Commun. 2020 Aug 13;11(1):4049.

[2] Masks Do More Than Protect Others During COVID-19: Reducing the Inoculum of SARS-CoV-2 to Protect the Wearer. Gandhi M, Beyrer C, Goosby E. J Gen Intern Med. 2020 Jul 31.

[3] New IHME COVID-19 forecasts see nearly 300,000 deaths by December 1. Institute for Health Metrics and Evaluation. August 6, 2020.

Links:

Coronavirus (COVID-19) (NIH)

Colin Worby (Broad Institute of MIT and Harvard, Cambridge, MA)

Hsiao-Han Chang (National Tsing Hua University, Taiwan)

NIH Support: National Institute of Allergy and Infectious Diseases


Charting a Rapid Course Toward Better COVID-19 Tests and Treatments

Posted on by

Point of care anti
Credit: Quidel; iStock/xavierarnau

It is becoming apparent that our country is entering a new and troubling phase of the pandemic as SARS-CoV-2, the novel coronavirus that causes COVID-19, continues to spread across many states and reaches into both urban and rural communities. This growing community spread is hard to track because up to 40 percent of infected people seem to have no symptoms. They can pass the virus quickly and unsuspectingly to friends and family members who might be more vulnerable to becoming seriously ill. That’s why we should all be wearing masks when we go out of the house—none of us can be sure we’re not that asymptomatic carrier of the virus.

This new phase makes fast, accessible, affordable diagnostic testing a critical first step in helping people and communities. In recognition of this need, NIH’s Rapid Acceleration of Diagnostics (RADx) initiative, just initiated in late April, has issued an urgent call to the nation’s inventors and innovators to develop fast, easy-to-use tests for SARS-CoV-2, the novel coronavirus that causes COVID-19. It brought a tremendous response, and NIH selected about 100 of the best concepts for an intense one-week “shark-tank” technology evaluation process.

Moving ahead at an unprecedented pace, NIH last week announced the first RADx projects to come through the deep dive with flying colors and enter the scale-up process necessary to provide additional rapid testing capacity to the U.S. public. As part of the RADx initiative, seven biomedical technology companies will receive a total of $248.7 million in federal stimulus funding to accelerate their efforts to scale up new lab-based and point-of-care technologies.

Four of these projects will aim to bolster the nation’s lab-based COVID-19 diagnostics capacity by tens of thousands of tests per day as soon as September and by millions by the end of the year. The other three will expand point-of-care testing for COVID-19, making results more rapidly and readily available in doctor’s offices, urgent care clinics, long-term care facilities, schools, child care centers, or even at home.

This is only a start, and we expect that more RADx projects will advance in the coming months and begin scaling up for wide-scale use. In the meantime, here’s an overview of the first seven projects developed through the initiative, which NIH is carrying out in partnership with the Office of the Assistant Secretary of Health, the Biomedical Advanced Research and Development Authority, and the Department of Defense:

Point-of-Care Testing Approaches

Mesa Biotech. Hand-held testing device detects the genetic material of SARS-CoV-2. Results are read from a removable, single-use cartridge in 30 minutes.

Quidel. Test kit detects protein (viral antigen) from SARS-CoV-2. Electronic analyzers provide results within 15 minutes. The U.S. Department of Health and Human Service has identified this technology for possible use in nursing homes.

Talis Biomedical. Compact testing instrument uses a multiplexed cartridge to detect the genetic material of SARS-CoV-2 through isothermal amplification. Optical detection system delivers results in under 30 minutes.

Lab-based Testing Approaches

Ginkgo Bioworks. Automated system uses next-generation sequencing to scan patient samples for SARS-CoV-2’s genetic material. This system will be scaled up to make it possible to process tens of thousands of tests simultaneously and deliver results within one to two days. The company’s goal is to scale up to 50,000 tests per day in September and 100,000 per day by the end of 2020.

Helix OpCo. By combining bulk shipping of test kits and patient samples, automation, and next-generation sequencing of genetic material, the company’s goal is to process up to 50,000 samples per day by the end of September and 100,000 per day by the end of 2020.

Fluidigm. Microfluidics platform with the capacity to process thousands of polymerase chain reaction (PCR) tests for SARS-CoV-2 genetic material per day. The company’s goal is to scale up this platform and deploy advanced integrated fluidic chips to provide tens to hundreds of thousands of new tests per day in the fall of 2020. Most tests will use saliva.

Mammoth Biosciences. System uses innovative CRISPR gene-editing technology to detect key pieces of SARS-CoV-2 genetic material in patient samples. The company’s goal is to provide a multi-fold increase in testing capacity in commercial laboratories.

At the same time, on the treatment front, significant strides continue to be made by a remarkable public-private partnership called Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV). Since its formation in May, the partnership, which involves 20 biopharmaceutical companies, academic experts, and multiple federal agencies, has evaluated hundreds of therapeutic agents with potential application for COVID-19 and prioritized the most promising candidates.

Among the most exciting approaches are monoclonal antibodies (mAbs), which are biologic drugs derived from neutralizing antibodies isolated from people who’ve survived COVID-19. This week, the partnership launched two trials (one for COVID-19 inpatients, the other for COVID-19 outpatients) of a mAB called LY-CoV555, which was developed by Eli Lilly and Company, Indianapolis, IN. It was discovered by Lilly’s development partner AbCellera Biologics Inc. Vancouver, Canada, in collaboration with the NIH’s National Institute of Allergy and Infectious Diseases (NIAID). In addition to the support from ACTIV, both of the newly launched studies also receive support for Operation Warp Speed, the government’s multi-agency effort against COVID-19.

LY-CoV555 was derived from the immune cells of one of the very first survivors of COVID-19 in the United States. It targets the spike protein on the surface of SARS-CoV-2, blocking it from attaching to human cells.

The first trial, which will look at both the safety and efficacy of the mAb for treating COVID-19, will involve about 300 individuals with mild to moderate COVID-19 who are hospitalized at facilities that are part of existing clinical trial networks. These volunteers will receive either an intravenous infusion of LY-CoV555 or a placebo solution. Five days later, their condition will be evaluated. If the initial data indicate that LY-CoV555 is safe and effective, the trial will transition immediately—and seamlessly—to enrolling an additional 700 participants with COVID-19, including some who are severely ill.

The second trial, which will evaluate how LY-CoV555 affects the early course of COVID-19, will involve 220 individuals with mild to moderate COVID-19 who don’t need to be hospitalized. In this study, participants will randomly receive either an intravenous infusion of LY-CoV555 or a placebo solution, and will be carefully monitored over the next 28 days. If the data indicate that LY-CoV555 is safe and shortens the course of COVID-19, the trial will then enroll an additional 1,780 outpatient volunteers and transition to a study that will more broadly evaluate its effectiveness.

Both trials are later expected to expand to include other experimental therapies under the same master study protocol. Master protocols allow coordinated and efficient evaluation of multiple investigational agents at multiple sites as the agents become available. These protocols are designed with a flexible, rapidly responsive framework to identify interventions that work, while reducing administrative burden and cost.

In addition, Lilly this week started a separate large-scale safety and efficacy trial to see if LY-CoV555 can be used to prevent COVID-19 in high-risk residents and staff at long-term care facilities. The study isn’t part of ACTIV.

NIH-funded researchers have been extremely busy over the past seven months, pursuing every avenue we can to detect, treat, and, ultimately, end this devasting pandemic. Far more work remains to be done, but as RADx and ACTIV exemplify, we’re making rapid progress through collaboration and a strong, sustained investment in scientific innovation.

Links:

Coronavirus (COVID-19) (NIH)

Rapid Acceleration of Diagnostics (RADx)

Video: NIH RADx Delivering New COVID-19 Testing Technologies to Meet U.S. Demand (YouTube)

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV)

Explaining Operation Warp Speed (U.S. Department of Health and Human Resources/Washington, D.C.)

NIH delivering new COVID-19 testing technologies to meet U.S. demand,” NIH news release,” July 31, 2020.

NIH launches clinical trial to test antibody treatment in hospitalized COVID-19 patients,” NIH new release, August 4, 2020.

NIH clinical trial to test antibodies and other experimental therapeutics for mild and moderate COVID-19,” NIH news release, August 4, 2020.


Next Page