Skip to main content


Watching Cancer Cells Play Ball

Posted on by

Credit: Ning Wang, University of Illinois at Urbana-Champaign

As tumor cells divide and grow, they push, pull, and squeeze one another. While scientists have suspected those mechanical stresses may play important roles in cancer, it’s been tough to figure out how. That’s in large part because there hadn’t been a good way to measure those forces within a tissue. Now, there is.

As described in Nature Communications, an NIH-funded research team has developed a technique for measuring those subtle mechanical forces in cancer and also during development [1]. Their ingenious approach is called the elastic round microgel (ERMG) method. It relies on round elastic microspheres—similar to miniature basketballs, only filled with fluorescent nanoparticles in place of air. In the time-lapse video above, you see growing and dividing melanoma cancer cells as they squeeze and spin one of those cell-sized “balls” over the course of 24 hours.

Nanodiamonds Shine in Root Canal Study

Posted on by


Caption: An artistic rendering of nanodiamonds
Credit: Ho Lab

When the time comes to get relief from a dental problem, we are all glad that dentistry has come so far—much of the progress based on research supported by NIH’s National Institute of Dental and Craniofacial Research. Still, almost no one looks forward to getting a root canal. Not only can the dental procedure be uncomfortable and costly, there’s also a risk of failure due to infection or other complications. But some NIH-supported researchers have now come up with what may prove to be a dazzling strategy for reducing that risk: nanodiamonds!

That’s right, these researchers decided to add tiny diamonds—so small that millions could fit on the head of the pin—to the standard filler that dentists use to seal off a tooth’s root. Not only are these nanodiamonds extremely strong, they have unique properties that make them very attractive vehicles for delivering drugs, including antimicrobials that help fight infections of the sealed root canal.

Nanoparticles Target Damaged Blood Vessels

Posted on by

Microscopic view of damaged vs. undamaged lamina

Caption: [A] Elastin stain (black) showing damaged elastic lamina in aorta. Inset (higher magnification) shows fluorescent nanoparticles attached to aorta where elastin is damaged. [B] Elastin stain showing aorta with undamaged elastic lamina. Inset shows no nanoparticle attachment. L stands for lumen, the open area inside the aorta.
Credit: Naren Vyavahare, Clemson University

Cardiovascular disease (CVD) is the number one killer of Americans. There are, in fact, many types of CVD—but common to most of them is damaged blood vessels. Stents can be inserted to prop open collapsed or narrowed arteries, and deliver drugs inside vessels. But, so far, we haven’t been able to repair the damaged vessels themselves. Researchers in an NIH-funded team of bioengineers at Clemson University, in South Carolina, are among those who believe that delivering drugs directly to the site of damage to mend the vessel might boost our ability to treat CVDs. And they’ve devised a way to deliver such drugs right where they want them: using specially-crafted nanoparticles.