Skip to main content


Testifying on COVID-19 Vaccine Development

Posted on by

Testifying on Vaccine Development for COVID-19
It was an honor to testify before the U.S. Senate Appropriations Subcommittee on Labor, Health and Human Services, Education, and Related Agencies on July 2. The topic of the hearing was the President’s plan to develop and distribute a COVID-19 vaccine. Also testifying were Robert Redfield, director of the Centers for Disease Control and Prevention, and Gary Disbrow, acting director of Biomedical Advanced Research and Development Authority (BARDA). The nearly three-hour hearing allowed a productive exchange of information on this critical topic and many of NIH’s high-priority efforts to develop vaccines and therapeutics for COVID-19. Credit: C-Span.

Rising to the COVID-19 Challenge: Rapid Acceleration of Diagnostics (RADx)

Posted on by

NIH Rapid Acceleration of Diagnostics (RADx) Initiative for COVID-19
Credit: NIH

Step into any major medical center, and you will see the amazing power of technology at work. From X-rays to functional MRIs, blood typing to DNA sequencing, heart-lung machines to robotic surgery, the progress that biomedical technology has made over the past century or so stands as a testament to human ingenuity—and its ability to rise to the all-important challenge of saving lives and improving health.

Today, our nation is in the midst of trying to contain a most formidable health threat: the global coronavirus disease 2019 (COVID-19) pandemic. I’m convinced that biomedical technology has a vital role to play in this urgent effort, which is why the NIH today launched the Rapid Acceleration of Diagnostics (RADx) Initiative.

Fueled by a bold $1.5 billion investment made possible by federal stimulus funding, RADx is an urgent call for science and engineering’s most inventive and visionary minds—from the basement to the board room—to develop rapid, easy-to-use testing technologies for SARS-CoV-2, the novel coronavirus that causes COVID-19. To achieve this, NIH will work closely with our colleagues at the Biomedical Advanced Research and Development Authority, the Centers for Disease Control and Prevention, and the Food and Drug Administration.

If all goes well, RADx aims to support innovative technologies that will make millions more rapid SARS-CoV-2 tests available to Americans by late summer or fall. Such widespread testing, which will facilitate the speedy identification and quarantine of infected individuals and their contacts, will likely be a critical component of making it possible for Americans to get safely back into public spaces, including returning to work and school.

For history buffs and tech geeks, the RADx acronym might ring a bell. During the World War II era, it was the brainstorming of MIT’s “Rad Lab” that gave birth to radar—a groundbreaking technology that, for the first time, enabled humans to use radio waves to “see” planes, storm systems, and many other things. Radar played such a valuable role in finding bombing targets, directing gunfire, and locating enemy aircraft, ships, and artillery that some have argued that this technology actually won the war for the U.S. and its Allies.

As for NIH’s RADx, our aim is to speed the development and commercialization of tests that can rapidly “see” if people have been infected with SARS-CoV-2 with very high sensitivity and specificity, meaning there would be few false negatives and false positives. A key part of this effort, which started today, will be a national technology development competition that’s open to all comers. In this competition, which begins a bit like a “shark tank,” participants will vie for an ultimate share of an approximately $500 million fund that will be awarded to help advance the most-promising testing technologies.

The proposals will undergo an initial review for technical, clinical, commercial, and regulatory issues. For example, could the testing technology be easily scaled up? Would it provide clear advantages over existing approaches? And would the U.S. health-care system realistically be able to adopt the technology rapidly? If selected, the proposals will then enter a three-phase process that will run into summer. Each development team will receive its own initial budget, deadlines, and set of deliverables. Competitors must also work collaboratively with an assigned expert and utilize associated web-based tools.

As you see in the graphic above, each phase will whittle down the competition. Those testing technologies that succeed in making it to Phase 2 will receive an appropriate budget to enable full clinical deployment on an accelerated timeline. They will also be matched with technical, business, and manufacturing experts to boost their chances of success.

Of course, not all technologies will enter the competition at the same stages of development. Those that are already relatively far along will be “fast tracked” to a phase that corresponds with their place in the commercialization process. Our hope is that the winning technologies will feature patient- and user-friendly designs, mobile-device integration, affordable cost, and increased accessibility, for use at the point of care (or even at home).

To assist competitors in their efforts to accomplish these bold goals, RADx will expand the Point-of-Care Technologies Research Network, which was established several years ago by NIH’s National Institute of Biomedical Imaging and Bioengineering (NIBIB). The network supports hundreds of investigators through five technology hubs at: Emory University/Georgia Institute of Technology, Atlanta; Johns Hopkins University, Baltimore; Northwestern University, Evanston, IL; University of Massachusetts Medical School, Worcester; and the Consortia for Improving Medicine with Innovation & Technology at Harvard Medical School/Massachusetts General Hospital, Boston.

RADx is focused on diagnostic testing, but NIH is also intensely engaged in developing safe, effective therapies and vaccines for COVID-19. One innovative effort, called Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV), is a public-private partnership that aims to speed the development of ways to treat and prevent this disease that’s caused so much suffering and death around the globe.

So, to the U.S. science and engineering community, I have these words: Let’s get going—our nation has never needed your skills more!


Coronavirus (COVID-19) (NIH)

NIH mobilizes national innovation initiative for COVID-19 diagnostics, NIH news release, April 29, 2020

Point-of-Care Technologies Research Network (National Institute of Biomedical Imaging and Biotechnology/NIH)

NIH to launch public-private partnership to speed COVID-19 vaccine and treatment options, NIH news release, April 17, 2020.

We Need More COVID-19 Tests. We Propose a ‘Shark Tank’ to Get There, Lamar Alexander, Roy Blunt. Washington Post, April 20, 2020.

Celebrating 2019 Biomedical Breakthroughs

Posted on by

Science 2019 Biomedical Breakthroughs and a Breakdown

Happy New Year! As we say goodbye to the Teens, let’s take a look back at 2019 and some of the groundbreaking scientific discoveries that closed out this remarkable decade.

Each December, the reporters and editors at the journal Science select their breakthrough of the year, and the choice for 2019 is nothing less than spectacular: An international network of radio astronomers published the first image of a black hole, the long-theorized cosmic singularity where gravity is so strong that even light cannot escape [1]. This one resides in a galaxy 53 million light-years from Earth! (A light-year equals about 6 trillion miles.)

Though the competition was certainly stiff in 2019, the biomedical sciences were well represented among Science’s “runner-up” breakthroughs. They include three breakthroughs that have received NIH support. Let’s take a look at them:

In a first, drug treats most cases of cystic fibrosis: Last October, two international research teams reported the results from phase 3 clinical trials of the triple drug therapy Trikafta to treat cystic fibrosis (CF). Their data showed Trikafta effectively compensates for the effects of a mutation carried by about 90 percent of people born with CF. Upon reviewing these impressive data, the Food and Drug Administration (FDA) approved Trikafta, developed by Vertex Pharmaceuticals.

The approval of Trikafta was a wonderful day for me personally, having co-led the team that isolated the CF gene 30 years ago. A few years later, I wrote a song called “Dare to Dream” imagining that wonderful day when “the story of CF is history.” Though we’ve still got more work to do, we’re getting a lot closer to making that dream come true. Indeed, with the approval of Trikafta, most people with CF have for the first time ever a real chance at managing this genetic disease as a chronic condition over the course of their lives. That’s a tremendous accomplishment considering that few with CF lived beyond their teens as recently as the 1980s.

Such progress has been made possible by decades of work involving a vast number of researchers, many funded by NIH, as well as by more than two decades of visionary and collaborative efforts between the Cystic Fibrosis Foundation and Aurora Biosciences (now, Vertex) that built upon that fundamental knowledge of the responsible gene and its protein product. Not only did this innovative approach serve to accelerate the development of therapies for CF, it established a model that may inform efforts to develop therapies for other rare genetic diseases.

Hope for Ebola patients, at last: It was just six years ago that news of a major Ebola outbreak in West Africa sounded a global health emergency of the highest order. Ebola virus disease was then recognized as an untreatable, rapidly fatal illness for the majority of those who contracted it. Though international control efforts ultimately contained the spread of the virus in West Africa within about two years, over 28,600 cases had been confirmed leading to more than 11,000 deaths—marking the largest known Ebola outbreak in human history. Most recently, another major outbreak continues to wreak havoc in northeastern Democratic Republic of Congo (DRC), where violent civil unrest is greatly challenging public health control efforts.

As troubling as this news remains, 2019 brought a needed breakthrough for the millions of people living in areas susceptible to Ebola outbreaks. A randomized clinical trial in the DRC evaluated four different drugs for treating acutely infected individuals, including an antibody against the virus called mAb114, and a cocktail of anti-Ebola antibodies referred to as REGN-EB3. The trial’s preliminary data showed that about 70 percent of the patients who received either mAb114 or the REGN-EB3 antibody cocktail survived, compared with about half of those given either of the other two medicines.

So compelling were these preliminary results that the trial, co-sponsored by NIH’s National Institute of Allergy and Infectious Diseases (NIAID) and the DRC’s National Institute for Biomedical Research, was halted last August. The results were also promptly made public to help save lives and stem the latest outbreak. All Ebola patients in the DRC treatment centers now are treated with one or the other of these two options. The trial results were recently published.

The NIH-developed mAb114 antibody and the REGN-EB3 cocktail are the first therapeutics to be shown in a scientifically rigorous study to be effective at treating Ebola. This work also demonstrates that ethically sound clinical research can be conducted under difficult conditions in the midst of a disease outbreak. In fact, the halted study was named Pamoja Tulinde Maisha (PALM), which means “together save lives” in Kiswahili.

To top off the life-saving progress in 2019, the FDA just approved the first vaccine for Ebola. Called Ervebo (earlier rVSV-ZEBOV), this single-dose injectable vaccine is a non-infectious version of an animal virus that has been genetically engineered to carry a segment of a gene from the Zaire species of the Ebola virus—the virus responsible for the current DRC outbreak and the West Africa outbreak. Because the vaccine does not contain the whole Zaire virus, it can’t cause Ebola. Results from a large study in Guinea conducted by the WHO indicated that the vaccine offered substantial protection against Ebola virus disease. Ervebo, produced by Merck, has already been given to over 259,000 individuals as part of the response to the DRC outbreak. The NIH has supported numerous clinical trials of the vaccine, including an ongoing study in West Africa.

Microbes combat malnourishment: Researchers discovered a few years ago that abnormal microbial communities, or microbiomes, in the intestine appear to contribute to childhood malnutrition. An NIH-supported research team followed up on this lead with a study of kids in Bangladesh, and it published last July its groundbreaking finding: that foods formulated to repair the “gut microbiome” helped malnourished kids rebuild their health. The researchers were able to identify a network of 15 bacterial species that consistently interact in the gut microbiomes of Bangladeshi children. In this month-long study, this bacterial network helped the researchers characterize a child’s microbiome and/or its relative state of repair.

But a month isn’t long enough to determine how the new foods would help children grow and recover. The researchers are conducting a similar study that is much longer and larger. Globally, malnutrition affects an estimated 238 million children under the age 5, stunting their normal growth, compromising their health, and limiting their mental development. The hope is that these new foods and others adapted for use around the world soon will help many more kids grow up to be healthy adults.

Measles Resurgent: The staff at Science also listed their less-encouraging 2019 Breakdowns of the Year, and unfortunately the biomedical sciences made the cut with the return of measles in the U.S. Prior to 1963, when the measles vaccine was developed, 3 to 4 million Americans were sickened by measles each year. Each year about 500 children would die from measles, and many more would suffer lifelong complications. As more people were vaccinated, the incidence of measles plummeted. By the year 2000, the disease was even declared eliminated from the U.S.

But, as more parents have chosen not to vaccinate their children, driven by the now debunked claim that vaccines are connected to autism, measles has made a very preventable comeback. Last October, the Centers for Disease Control and Prevention (CDC) reported an estimated 1,250 measles cases in the United States at that point in 2019, surpassing the total number of cases reported annually in each of the past 25 years.

The good news is those numbers can be reduced if more people get the vaccine, which has been shown repeatedly in many large and rigorous studies to be safe and effective. The CDC recommends that children should receive their first dose by 12 to 15 months of age and a second dose between the ages of 4 and 6. Older people who’ve been vaccinated or have had the measles previously should consider being re-vaccinated, especially if they live in places with low vaccination rates or will be traveling to countries where measles are endemic.

Despite this public health breakdown, 2019 closed out a memorable decade of scientific discovery. The Twenties will build on discoveries made during the Teens and bring us even closer to an era of precision medicine to improve the lives of millions of Americans. So, onward to 2020—and happy New Year!


[1] 2019 Breakthrough of the Year. Science, December 19, 2019.

NIH Support: These breakthroughs represent the culmination of years of research involving many investigators and the support of multiple NIH institutes.

Meeting with CDC Director

Posted on by

Dr. Collins and other NIH leaders meets with CDC director

Dr. Robert Redfield (second left), director of the Centers for Disease Control and Prevention, visited NIH on June 12, 2018. Joining me in welcoming him are James Gilman, first chief executive officer for the NIH Clinical Center (left) and Anthony Fauci (right), director of NIH’s National Institute of Allergy and Infectious Diseases.
Credit: NIH