Skip to main content

Moderna vaccine

How COVID-19 Immunity Holds Up Over Time

Posted on by

Antibody protection. Graph showing gradient of many antibodies early and less as time goes on

More than 215 million people in the United States are now fully vaccinated against the SARS-CoV-2 virus responsible for COVID-19 [1]. More than 40 percent—more than 94 million people—also have rolled up their sleeves for an additional, booster dose. Now, an NIH-funded study exploring how mRNA vaccines are performing over time comes as a reminder of just how important it will be to keep those COVID-19 vaccines up to date as coronavirus variants continue to circulate.

The results, published in the journal Science Translational Medicine, show that people who received two doses of either the Pfizer or Moderna COVID-19 mRNA vaccines did generate needed virus-neutralizing antibodies [2]. But levels of those antibodies dropped considerably after six months, suggesting declining immunity over time.

The data also reveal that study participants had much reduced protection against newer SARS-CoV-2 variants, including Delta and Omicron. While antibody protection remained stronger in people who’d also had a breakthrough infection, even that didn’t appear to offer much protection against infection by the Omicron variant.

The new study comes from a team led by Shan-Lu Liu at The Ohio State University, Columbus. They wanted to explore how well vaccine-acquired immune protection holds up over time, especially in light of newly arising SARS-CoV-2 variants.

This is an important issue going forward because mRNA vaccines train the immune system to produce antibodies against the spike proteins that crown the surface of the SARS-CoV-2 coronavirus. These new variants often have mutated, or slightly changed, spike proteins compared to the original one the immune system has been trained to detect, potentially dampening the immune response.

In the study, the team collected serum samples from 48 fully vaccinated health care workers at four key time points: 1) before vaccination, 2) three weeks after the first dose, 3) one month after the second dose, and 4) six months after the second dose.

They then tested the ability of antibodies in those samples to neutralize spike proteins as a correlate for how well a vaccine works to prevent infection. The spike proteins represented five major SARS-CoV-2 variants. The variants included D614G, which arose very soon after the coronavirus first was identified in Wuhan and quickly took over, as well as Alpha (B.1.1.7), Beta (B.1.351), Delta (B.1.617.2), and Omicron (B.1.1.529).

The researchers explored in the lab how neutralizing antibodies within those serum samples reacted to SARS-CoV-2 pseudoviruses representing each of the five variants. SARS-CoV-2 pseudoviruses are harmless viruses engineered, in this case, to bear coronavirus spike proteins on their surfaces. Because they don’t replicate, they are safe to study without specially designed biosafety facilities.

At any of the four time points, antibodies showed a minimal ability to neutralize the Omicron spike protein, which harbors about 30 mutations. These findings are consistent with an earlier study showing a significant decline in neutralizing antibodies against Omicron in people who’ve received the initial series of two shots, with improved neutralizing ability following an additional booster dose.

The neutralizing ability of antibodies against all other spike variants showed a dramatic decline from 1 to 6 months after the second dose. While there was a marked decline over time after both vaccines, samples from health care workers who’d received the Moderna vaccine showed about twice the neutralizing ability of those who’d received the Pfizer vaccine. The data also suggests greater immune protection in fully vaccinated healthcare workers who’d had a breakthrough infection with SARS-CoV-2.

In addition to recommending full vaccination for all eligible individuals, the Centers for Disease Control and Prevention (CDC) now recommends everyone 12 years and up should get a booster dose of either the Pfizer or Moderna vaccines at least five months after completing the primary series of two shots [3]. Those who’ve received the Johnson & Johnson vaccine should get a booster at least two months after receiving the initial dose.

While plenty of questions about the durability of COVID-19 immunity over time remain, it’s clear that the rapid deployment of multiple vaccines over the course of this pandemic already has saved many lives and kept many more people out of the hospital. As the Omicron threat subsides and we start to look forward to better days ahead, it will remain critical for researchers and policymakers to continually evaluate and revise vaccination strategies and recommendations, to keep our defenses up as this virus continues to evolve.

References:

[1] COVID-19 vaccinations in the United States. Centers for Disease Control and Prevention. February 27, 2022.

[2] Neutralizing antibody responses elicited by SARS-CoV-2 mRNA vaccination wane over time and are boosted by breakthrough infection. Evans JP, Zeng C, Carlin C, Lozanski G, Saif LJ, Oltz EM, Gumina RJ, Liu SL. Sci Transl Med. 2022 Feb 15:eabn8057.

[3] COVID-19 vaccine booster shots. Centers for Disease Control and Prevention. Feb 2, 2022.

Links:

COVID-19 Research (NIH)

Shan-Lu Liu (The Ohio State University, Columbus)

NIH Support: National Institute of Allergy and Infectious Diseases; National Cancer Institute; National Heart, Lung, and Blood Institute; Eunice Kennedy Shriver National Institute of Child Health and Human Development


Accelerating COVID-19 Vaccine Testing with ‘Correlates of Protection’

Posted on by

Women walking with two insets showing 1. Few antibodies labeled "Vaccine efficacy of 78%" and 2, many antibodies labeled, "Vaccine efficacy of 98%

With Omicron now on so many people’s minds, public health officials and virologists around the world are laser focused on tracking the spread of this concerning SARS-CoV-2 variant and using every possible means to determine the effectiveness of our COVID-19 vaccines against it. Ultimately, the answer will depend on what happens in the real world. But it will also help to have a ready laboratory means for gauging how well a vaccine works, without having to wait many months for the results in the field.

With this latter idea in mind, I’m happy to share results of an NIH-funded effort to understand the immune responses associated with vaccine-acquired protection against SARS-CoV-2 [1]. The findings, based on the analysis of blood samples from more than 1,000 people who received the Moderna mRNA vaccine, show that antibody levels do correlate, albeit somewhat imperfectly, with how well a vaccine works to prevent infection.

Such measures of immunity, known as “correlates of protection,” have potential to support the approval of new or updated vaccines more rapidly. They’re also useful to show how well a vaccine will work in groups that weren’t represented in a vaccine’s initial testing, such as children, pregnant women, and those with certain health conditions.

The latest study, published in the journal Science, comes from a team of researchers led by Peter Gilbert, Fred Hutchinson Cancer Research Center, Seattle; David Montefiori, Duke University, Durham, NC; and Adrian McDermott, NIH’s Vaccine Research Center, National Institute of Allergy and Infectious Diseases.

The team started with existing data from the Coronavirus Efficacy (COVE) trial. This phase 3 study, conducted in 30,000 U.S. adults, found the Moderna vaccine was safe and about 94 percent effective in protecting people from symptomatic infection with SARS-CoV-2 [2].

The researchers wanted to understand the underlying immune responses that afforded that impressive level of COVID-19 protection. They also sought to develop a means to measure those responses in the lab and quickly show how well a vaccine works.

To learn more, Gilbert’s team conducted tests on blood samples from COVE participants at the time of their second vaccine dose and again four weeks later. Two of the tests measured concentrations of binding antibodies (bAbs) that latch onto spike proteins that adorn the coronavirus surface. Two others measured the concentration of more broadly protective neutralizing antibodies (nAbs), which block SARS-CoV-2 from infecting human cells via ACE2 receptors found on their surfaces.

Each of the four tests showed antibody levels that were consistently higher in vaccine recipients who did not develop COVID-19 than in those who did. That is consistent with expectations. But these data also allowed the researchers to identify the specific antibody levels associated with various levels of protection from disease.

For those with the highest antibody levels, the vaccine offered an estimated 98 percent protection. Those with levels about 1,000 times lower still were well protected, but their vaccine efficacy was reduced to about 78 percent.

Based on any of the antibodies tested, the estimated COVID-19 risk was about 10 times lower for vaccine recipients with antibodies in the top 10 percent of values compared to those with antibodies that weren’t detectable. Overall, the findings suggest that tests for antibody levels can be applied to make predictions about an mRNA vaccine’s efficacy and may be used to guide modifications to the current vaccine regimen.

To understand the significance of this finding, consider that for a two-dose vaccine like Moderna or Pfizer, a trial using such correlates of protection might generate sufficient data in as little as two months [3]. As a result, such a trial might show whether a vaccine was meeting its benchmarks in 3 to 5 months. By comparison, even a rapid clinical trial done the standard way would take at least seven months to complete. Importantly also, trials relying on such correlates of protection require many fewer participants.

Since all four tests performed equally well, the researchers say it’s conceivable that a single antibody assay might be sufficient to predict how effective a vaccine will be in a clinical trial. Of course, such trials would require subsequent real-world studies to verify that the predicted vaccine efficacy matches actual immune protection.

It should be noted that the Food and Drug Administration (FDA) would need to approve the use of such correlates of protection before their adoption in any vaccine trial. But, to date, the totality of evidence on neutralizing antibody responses as correlates of protection—for which this COVE trial data is a major contributor—is impressive.

Neutralizing antibody levels are also now being considered for use in future coronavirus vaccine trials. Indeed, for the EUA of Pfizer’s mRNA vaccine for 5-to-11-year-olds, the FDA accepted pre-specified success criteria based on neutralizing antibody responses in this age group being as good as those observed in 16- to 25-year-olds [4].

Antibody levels also have been taken into consideration for decisions about booster shots. However, it’s important to note that antibody levels are not precise enough to help in deciding whether or not any particular individual needs a COVID-19 booster. Those recommendations are based on how much time has passed since the original immunization.

Getting a booster is a really good idea heading into the holidays. The Delta variant remains very much the dominant strain in the U.S., and we need to slow its spread. Most experts think the vaccines and boosters will also provide some protection against the Omicron variant—though the evidence we need is still a week or two away. The Centers for Disease Control and Prevention (CDC) recommends a COVID-19 booster for everyone ages 18 and up at least six months after your second dose of mRNA vaccine or two months after receiving the single dose of the Johnson & Johnson vaccine [5]. You may choose to get the same vaccine or a different one. And, there is a place near you that is offering the shot.

References:

[1] Immune correlates analysis of the mRNA-1273 COVID-19 vaccine efficacy clinical trial.
Gilbert PB, Montefiori DC, McDermott AB, Fong Y, Benkeser D, Deng W, Zhou H, Houchens CR, Martins K, Jayashankar L, Castellino F, Flach B, Lin BC, O’Connell S, McDanal C, Eaton A, Sarzotti-Kelsoe M, Lu Y, Yu C, Borate B, van der Laan LWP, Hejazi NS, Huynh C, Miller J, El Sahly HM, Baden LR, Baron M, De La Cruz L, Gay C, Kalams S, Kelley CF, Andrasik MP, Kublin JG, Corey L, Neuzil KM, Carpp LN, Pajon R, Follmann D, Donis RO, Koup RA; Immune Assays Team§; Moderna, Inc. Team§; Coronavirus Vaccine Prevention Network (CoVPN)/Coronavirus Efficacy (COVE) Team§; United States Government (USG)/CoVPN Biostatistics Team§. Science. 2021 Nov 23:eab3435.

[2] Efficacy and safety of the mRNA-1273 SARS-CoV-2 vaccine. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB, McGettigan J, Khetan S, Segall N, Solis J, Brosz A, Fierro C, Schwartz H, Neuzil K, Corey L, Gilbert P, Janes H, Follmann D, Marovich M, Mascola J, Polakowski L, Ledgerwood J, Graham BS, Bennett H, Pajon R, Knightly C, Leav B, Deng W, Zhou H, Han S, Ivarsson M, Miller J, Zaks T; COVE Study Group. N Engl J Med. 2021 Feb 4;384(5):403-416.

[3] A government-led effort to identify correlates of protection for COVID-19 vaccines. Koup RA, Donis RO, Gilbert PB, Li AW, Shah NA, Houchens CR. Nat Med. 2021 Sep;27(9):1493-1494.

[4] Evaluation of the BNT162b2 Covid-19 vaccine in children 5 to 11 years of age. Walter EB, Talaat KR, Sabharwal C, Gurtman A, Lockhart S, Paulsen GC, Barnett ED, Muñoz FM, Maldonado Y, Pahud BA, Domachowske JB, Simões EAF, Sarwar UN, Kitchin N, Cunliffe L, Rojo P, Kuchar E, Rämet M, Munjal I, Perez JL, Frenck RW Jr, Lagkadinou E, Swanson KA, Ma H, Xu X, Koury K, Mather S, Belanger TJ, Cooper D, Türeci Ö, Dormitzer PR, Şahin U, Jansen KU, Gruber WC; C4591007 Clinical Trial Group. N Engl J Med. 2021 Nov 9:NEJMoa2116298.

[5] COVID-19 vaccine booster shots. Centers for Disease Control and Prevention. Nov 29, 2021.

Links:

COVID-19 Research (NIH)

COVID-19 Prevention Network

Combat COVID (U.S. Department of Health and Human Services)

Peter Gilbert (Fred Hutchison Cancer Research Center)

David Montefiori (Duke University, Durham, NC)

Adrian McDermott (National Institute of Allergy and Infectious Diseases/NIH)

NIH Support: National Institute of Allergy and Infectious Diseases


Feeling Grateful This Thanksgiving for Biomedical Research

Posted on by

Credit: Lucky Business/Shutterstock

Yes, we can all agree that 2021 has been a tough year. But despite all that, Thanksgiving is the right time to stop and count our many blessings. My list starts with my loving wife Diane and family, all of whom have been sources of encouragement in these trying times. But also high up on the list this Thanksgiving is my extreme gratitude to the scientific community for all the research progress that has been made over the past 23 months to combat the pandemic and return our lives ever closer to normal.

Last year, we were busy learning how to celebrate a virtual Thanksgiving. This year, most of us are feeling encouraged about holding face-to-face gatherings once again—but carefully!—and coordinating which dishes to prepare for the annual feast.

The COVID-19 vaccines, developed by science in record time and with impressive safety and effectiveness, have made this possible. The almost 230 million Americans who have chosen to receive at least one dose of a COVID-19 vaccine have taken a critical step to protect themselves and others. They have made this season a much safer one for themselves and those around them than a year ago. That includes almost all adults ages 65 and up. While vaccination rates aren’t yet as high as they need to be in younger age groups, about 70 percent of Americans ages 12 and up are now fully vaccinated.

But with evidence that the effectiveness of the vaccines can wane over time and with the continued threat of the Delta variant, I was happy to see the recent approval by both FDA and CDC that all adults 18 and over are now eligible to receive a booster. That is, provided you are now more than 6 months past your initial immunization with the Moderna or Pfizer or 2 months past your immunization with the Johnson & Johnson vaccine. I recently got my Moderna booster and I’m glad for that additional protection. Don’t wait—the booster is the best way to defend against a possible winter surge.

Children age 5 and up are also now eligible to get the Pfizer vaccine, a development that I know brought a sense of relief and gratitude for many parents with school-aged children at home. It will take a little time for full vaccination of this age group. But more than 2.5 million young kids around the country already have rolled up their sleeves and have some immunity against COVID-19. These children are on track to be fully vaccinated before Christmas.

I’m also extremely grateful for all the progress that’s been made in treating COVID-19. Developing new treatments typically takes many years, if not decades. But NIH’s Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) initiative, a public-private partnership involving 20 biopharmaceutical companies, academic experts, and multiple federal agencies, has helped lead the way to this rapid progress.

We’ve seen successes in the use of monoclonal antibodies and in the repurposing of existing drugs, such as blood thinning treatments, to keep folks hospitalized with COVID-19 from becoming severely ill and needing some form of organ support. Now it looks as though our hopes for safe and effective oral antiviral medicines to reduce the risk of severe illness in individuals just diagnosed with COVID-19 could soon be realized, too.

To combat COVID-19, rapid and readily accessible testing also is key, and NIH’s Rapid Acceleration of Diagnostics (RADx®) initiative continues to speed innovation in COVID-19 testing. RADx® also recently launched a simple online calculator tool to help individuals make critical decisions about when to get a test [1]. Meanwhile, a new initiative called Say Yes! COVID Test (SYCT) is exploring how best to implement home-testing programs in our communities.

More research progress is on the way. But, until the pandemic is history, please remember to stay safe this holiday season. The best way to do so is to get fully vaccinated [2]. As I noted above, most adults who got vaccinated earlier this year are now eligible for a booster shot to ensure they remain well protected. Go to vaccines.gov to find the site closest to you that can provide the shot.

The best way to protect young children who aren’t yet eligible or fully vaccinated and others who may be at higher risk is by making sure you and others around them are vaccinated. It’s still strongly recommended to wear a well-fitting mask over your nose and mouth when in public indoor settings, especially if there’s considerable spread of COVID-19 in your community.

If you are gathering with multiple households or people from different parts of the country, consider getting tested for COVID-19 in advance and take extra precautions before traveling. By taking full advantage of all the many scientific advances we’ve made over the last year, we can now feel good about celebrating together again this holiday season. Happy Thanksgiving!

References:

[1] When to Test offers free online tool to help individuals make informed COVID-19 testing decisions. National Institutes of Health. November 3, 2021.

[2] Safer ways to celebrate holidays. Centers for Disease Control and Prevention. October 15, 2021.

Links:

COVID-19 Research (NIH)

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) (NIH)

Rapid Acceleration of Diagnostics (RADx®) (NIH)

When To Test (Consortia for Improving Medicine with Innovation & Technology, Boston)


The Latest on COVID-19 Boosters

Posted on by

COVID-19 Vaccine vials labeled dose one, dose two, and booster

More than 180 million Americans, including more than 80 percent of people over age 65, are fully vaccinated against the SARS-CoV-2 virus responsible for COVID-19. There’s no question that full vaccination is the best way to protect yourself against this devastating virus and reduce your chances of developing severe or long-lasting illness if you do get sick. But, to stay ahead of this terrible virus, important questions do remain. A big one right now is: How soon will booster shots be needed and for whom?

The answers to this question will continue to evolve as more high-quality data become available. But here’s what we know right now for the Pfizer-BioNTech booster. Late last week, Dr. Rochelle Walensky, the Director of the Centers for Disease Control and Prevention (CDC), recommended that:

  • Those 65 years and older and residents in long-term care settings should receive a booster shot at least 6 months after being fully vaccinated with the Pfizer-BioNTech vaccine,
  • People aged 50–64 years with underlying medical conditions should receive a booster shot at least 6 months after being fully vaccinated with the Pfizer-BioNTech vaccine,
  • Individuals aged 18–49 years with underlying medical conditions may receive a booster shot at least 6 months after getting fully vaccinated with their Pfizer-BioNTech vaccine, based on their individual benefits and risks.
  • Frontline workers who received the Pfizer-BioNTech vaccine may receive a booster. This group includes anyone age 18 through 64 whose frequent institutional or occupational exposure to SARS-CoV-2 puts them at high risk of COVID-19. [1]

Taken together, these CDC recommendations are in line with those issued two days earlier by the Food and Drug Administration (FDA) [2].

Some of the most-compelling data that was under review came from an Israeli study, published recently in the New England Journal of Medicine, that explored the benefit of booster shots for older people [3]. Israel, with a population of around 9 million, has a national health system and one of the world’s highest COVID-19 vaccination rates. That country’s vaccination campaign, based solely on Pfizer-BioNTech, was organized early in 2021, and so its experience is about three months ahead of ours here in the U.S. These features, plus some of the world’s largest integrated health record databases, have made Israel an important source of early data on how the Pfizer-BioNTech mRNA vaccine can be expected to work in the real world over time.

Earlier this year, Israeli public health officials noted evidence for an increased number of breakthrough infections, some of which were severe. So, at the end of July 2021, Israel approved the administration of third doses, or “boosters,” of the Pfizer-BioNTech vaccine for people ages 60 and up who had received their second dose at least five months before.

To find out how well these booster shots worked to bolster immune protection against COVID-19, researchers looked to more than 1.1 million fully vaccinated people who were at least 60 years old. They compared the rate of confirmed COVID-19 infection and severe illness from the end of July to the end of August among people who’d received a booster at least 12 days earlier with those who hadn’t gotten boosters.

Nearly 13,500 older individuals who’d been fully vaccinated before March 2021, got a breakthrough infection during the two months of study. Importantly, the rate of confirmed infection in the group that got boosters was 10 times lower on average than in the group that didn’t get boosters. The data on severe illness looked even better. Of course, there could be other factors at play that weren’t accounted for in the study, but the findings certainly suggest that a third Pfizer shot is safe and effective for older people.

Though the Israeli studies on booster shots are a little ahead of the international pack, we are starting to see results from the research underway in the U.S. Last week, for example, Johnson & Johnson announced new data in support of boosters to improve and extend immune protection in those who received its single-dose COVID-19 vaccine [4]. For people who received the Moderna mRNA vaccine, the company has already submitted its data to the FDA for booster authorization. A decision is expected soon.

As the critical evidence on boosters continues to emerge, the most important way to avoid another winter surge of COVID-19 is to follow all public health recommendations. Most importantly, that includes getting fully vaccinated if you haven’t already, and encouraging others around you to do the same. If you’re currently eligible for a booster shot, they are available at 80,000 locations across the nation, and can help you stay healthy and well for the coming holiday season.

For others eager to do everything possible to protect themselves, their families, and their communities against this terrible virus—but who are not yet eligible for a booster—sit tight for now. The data on booster shots are still coming in for folks like me who were immunized with the Moderna or Johnson & Johnson vaccines. It’s likely that the FDA and CDC will widen their recommendations in the coming weeks.

In the meantime, the Delta variant is still out there and circulating. That makes it critical to maintain vigilance. Wear a mask in indoor spaces, keep a physical distance from others, and remember to wash your hands frequently. We are all really tired of COVID-19, but patience is still required as we learn more about how best to stay ahead of this virus.

References:

[1] CDC statement on ACIP booster recommendations. Centers for Disease Control and Prevention news release. September 24, 2021

[2] FDA authorizes booster dose of Pfizer-BioNTech COVID-19 vaccine for certain populations. Food and Drug Administration news release. September 22, 2021

[3] Protection of BNT162b2 vaccine booster against Covid-19 in Israel. Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, Mizrahi B, Alroy-Preis S, Ash N, Milo R, Huppert A. N Engl J Med. 2021 Sep 15.

[4] Johnson & Johnson announces real-world evidence and Phase 3 data confirming strong and long-lasting protection of single-shot COVID-19 vaccine in the U.S. Johnson & Johnson. September 21, 2021.

Links:

COVID-19 Research (NIH)


Breakthrough Infections in Vaccinated People Less Likely to Cause ‘Long COVID’

Posted on by

Long Covid. Two syringes in an arrow pointed down. symptoms of long covid in the background

There’s no question that vaccines are making a tremendous difference in protecting individuals and whole communities against infection and severe illness from SARS-CoV-2, the coronavirus that causes COVID-19. And now, there’s yet another reason to get the vaccine: in the event of a breakthrough infection, people who are fully vaccinated also are substantially less likely to develop Long COVID Syndrome, which causes brain fog, muscle pain, fatigue, and a constellation of other debilitating symptoms that can last for months after recovery from an initial infection.

These important findings published in The Lancet Infectious Diseases are the latest from the COVID Symptom Study [1]. This study allows everyday citizens in the United Kingdom to download a smartphone app and self-report data on their infection, symptoms, and vaccination status over a long period of time.

Previously, the study found that 1 in 20 people in the U.K. who got COVID-19 battled Long COVID symptoms for eight weeks or more. But this work was done before vaccines were widely available. What about the risk among those who got COVID-19 for the first time as a breakthrough infection after receiving a double dose of any of the three COVID-19 vaccines (Pfizer, Moderna, AstraZeneca) authorized for use in the U.K.?

To answer that question, Claire Steves, King’s College, London, and colleagues looked to frequent users of the COVID Symptom Study app on their smartphones. In its new work, Steves’ team was interested in analyzing data submitted by folks who’d logged their symptoms, test results, and vaccination status between December 9, 2020, and July 4, 2021. The team found there were more than 1.2 million adults who’d received a first dose of vaccine and nearly 1 million who were fully vaccinated during this period.

The data show that only 0.2 percent of those who were fully vaccinated later tested positive for COVID-19. While accounting for differences in age, sex, and other risk factors, the researchers found that fully vaccinated individuals who developed breakthrough infections were about half (49 percent) as likely as unvaccinated people to report symptoms of Long COVID Syndrome lasting at least four weeks after infection.

The most common symptoms were similar in vaccinated and unvaccinated adults with COVID-19, and included loss of smell, cough, fever, headaches, and fatigue. However, all of these symptoms were milder and less frequently reported among the vaccinated as compared to the unvaccinated.

Vaccinated people who became infected were also more likely than the unvaccinated to be asymptomatic. And, if they did develop symptoms, they were half as likely to report multiple symptoms in the first week of illness. Another vaccination benefit was that people with a breakthrough infection were about a third as likely to report any severe symptoms. They also were more than 70 percent less likely to require hospitalization.

We still have a lot to learn about Long COVID, and, to get the answers, NIH has launched the RECOVER Initiative. The initiative will study tens of thousands of COVID-19 survivors to understand why many individuals don’t recover as quickly as expected, and what might be the cause, prevention, and treatment for Long COVID.

In the meantime, these latest findings offer the encouraging news that help is already here in the form of vaccines, which provide a very effective way to protect against COVID-19 and greatly reduce the odds of Long COVID if you do get sick. So, if you haven’t done so already, make a plan to protect your own health and help end this pandemic by getting yourself fully vaccinated. Vaccines are free and available near to you—just go to vaccines.gov or text your zip code to 438829.

Reference:

[1] Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. Antonelli M, Penfold RS, Merino J, Sudre CH, Molteni E, Berry S, Canas LS, Graham MS, Klaser K, Modat M, Murray B, Kerfoot E, Chen L, Deng J, Österdahl MF, Cheetham NJ, Drew DA, Nguyen LH, Pujol JC, Hu C, Selvachandran S, Polidori L, May A, Wolf J, Chan AT, Hammers A, Duncan EL, Spector TD, Ourselin S, Steves CJ. Lancet Infect Dis. 2021 Sep 1:S1473-3099(21)00460-6.

Links:

COVID-19 Research (NIH)

Claire Steves (King’s College London, United Kingdom)

COVID Symptom Study


Next Page