Skip to main content

rare disease

Valerie Arboleda

Valerie Arboleda
Credit: UCLA/Margaret Sison Photography

Four years ago, Valerie Arboleda accomplished something most young medical geneticists rarely do. She helped discover a rare congenital disease now known as KAT6A syndrome [1]. From the original 10 cases to the more than 100 diagnosed today, KAT6A kids share a single altered gene that causes neuro-developmental delays, most prominently in learning to walk and talk, plus a spectrum of possible abnormalities involving the head, face, heart, and immune system.

Now, Arboleda wants to accomplish something even more groundbreaking. With a 2017 NIH Director’s Early Independence Award, she will develop ways to mine Big Data—the voluminous amounts of DNA sequence and other biological information now stored in public databases—to unearth new clues into the biology of rare disorders like KAT6A syndrome. If successful, Arboleda’s work could bring greater precision to the diagnosis and potentially treatment of Mendelian disorders, as well as provide greater clarity into the specific challenges that might lie ahead for an affected child.


Posted In: Health, Science

Tags: , , , , , , , , , ,

Faith Fortenberry

More than a decade ago, the NIH’s National Institute of Neurological Disorders and Stroke (NINDS) launched a special project to accelerate the translation of basic scientific discoveries into new treatments for a rare and often fatal disease. Five-year-old Faith Fortenberry whom you see above is among the kids who may benefit from the success of this pioneering endeavor.

Faith was born with spinal muscular atrophy (SMA), a hereditary neurodegenerative disease that can affect movement, breathing, and swallowing. When the NIH project began, there was no treatment for SMA, but researchers had discovered that mutations in the SMN1 gene were responsible for the disorder. Such mutations cause a deficiency of SMN protein, leading to degeneration of neurons in the brain and spinal cord, and progressive muscle weakness throughout the body. The NIH effort supported research to discover ways of raising SMN levels in cells grown in lab dishes, and then worked closely with patient advocates and pharmaceutical companies to move the most promising leads into drug development and clinical testing.

Given the desperate need for SMA treatments and all of the scientific energy that’s been devoted to pursuing them, I’ve been following this field closely. So, I was very encouraged to learn recently about the promising results of human tests of not just one—but two—new treatments for SMA [1, 2]. (more…)

Posted In: Health, Science, technology

Tags: , , , , , , , , , , ,

As Halloween approaches, lots of kids and kids-at-heart will be watching out for ghosts and goblins. So, to help meet the seasonal demand for scary visuals, I’d like to share this award-winning image that’s been packaged into a brief video.

The “ghoul” you see above is no fleeting apparition: it’s a mouse cell labelled to reveal its microtubules, which are dynamic filaments involved in cellular structure, transport, and motility. Graduate student Victor DeBarros captured this image a couple of years ago in the NIH-supported lab of Randall Duncan at the University of Delaware, Newark, as part of research on the rare skeletal disorder metatropic dysplasia (MD).


Posted In: Health, Science, Video

Tags: , , , , , , , , , , , ,

Limb Muscles

Credit: Mary P. Colasanto, University of Utah, Salt Lake City

Twice a week, I do an hour of weight training to maintain muscle strength and tone. Millions of Americans do the same, and there’s always a lot of attention paid to those upper arm muscles—the biceps and triceps. Less appreciated is another arm muscle that pumps right along during workouts: the brachialis. This muscle—located under the biceps—helps your elbow flex when you are doing all kinds of things, whether curling a 50-pound barbell or just grabbing a bag of groceries or your luggage out of the car.

Now, scientific studies of the triceps and brachialis are providing important clues about how the body’s 40 different types of limb muscles assume their distinct identities during development [1]. In these images from the NIH-supported lab of Gabrielle Kardon at the University of Utah, Salt Lake City, you see the developing forelimb of a healthy mouse strain (top) compared to that of a mutant mouse strain with a stiff, abnormal gait (bottom).


Posted In: Health, Science

Tags: , , , , , , , , , , , , , , , , , , , ,

Cas9 clipping the Huntington's repeatsMy father was a folk song collector, and I grew up listening to the music of Woody Guthrie. On July 14th, folk music enthusiasts will be celebrating the 105th anniversary of Guthrie’s birth in his hometown of Okemah, OK. Besides being renowned for writing “This Land is Your Land” and other folk classics, Guthrie has another more tragic claim to fame: he provided the world with a glimpse at the devastation caused by a rare, inherited neurological disorder called Huntington’s disease.

When Guthrie died from complications of Huntington’s a half-century ago, the disease was untreatable. Sadly, it still is. But years of basic science advances, combined with the promise of innovative gene editing systems such as CRISPR/Cas9, are providing renewed hope that we will someday be able to treat or even cure Huntington’s disease, along with many other inherited disorders.


Posted In: Health, Science

Tags: , , , , , , , , , , , , , , , , , , ,

Next Page »