Skip to main content

rare disease

Thoughts from the Front Lines of Rare Disease Research

Posted on by

Harper Spero and Alexandra Freeman
Harper Spero with physician-researcher Alexandra Freeman, who helps lead the Job’s syndrome research team at the NIH Clinical Center. Courtesy of Harper Spero.

There are nearly 7,000 rare diseases, some of which affect just a few dozen people. Yet, if one considers all these conditions together, about 30 million people in the United States have rare diseases. On this Rare Disease Day, I’d like to challenge each of you to think about how we can raise the visibility of individuals living with rare diseases, as well as the researchers working hard to help them.

I’d like to introduce you to Harper Spero, who is using her rare gift of storytelling to share the experiences of people with a wide variety of conditions that she likes to call “invisible illnesses.” Through her podcast series, called Made Visible, this 34-year-old New York City native is among the many people helping to spread the word that rare diseases are not rare.

Spero knows what it’s like to live with a rare disease. Shortly after she was born, it became clear that she was unusually prone to infections. But doctors had a hard time figuring out what exactly was wrong with this little girl. Finally, at the age of 10, Spero was diagnosed with Hyper-Immunoglobulin E Syndrome (HIES), also known as Job’s syndrome. There currently is no cure for this rare genetic disease, which impairs the immune system and affects multiple parts of the body. But Spero is determined to live a normal life despite her chronic “invisible illness.”

Spero also knows what it’s like to take part in biomedical research. Seven years ago, she came to the NIH Clinical Center here in Bethesda, MD, seeking help for a large cyst in her right lung. It marked the beginning of a positive partnership with a Job’s syndrome research team led by two of NIH’s many dedicated physician-scientists, Alexandra Freeman and Steven Holland. Not only did the NIH researchers work with Spero to figure out the best ways of managing her symptoms, they are using what they’ve learned from her and about 175 other Job’s syndrome patients to develop approaches for earlier diagnosis and interventions. Spero, who visits the Clinical Center annually and communicates with the NIH team on a weekly basis, has been so inspired by the experience that she even chose to feature Dr. Freeman in one of her recent podcasts.

Unlike Spero, I don’t have a podcast—at least not yet. But I do have a blog, and Spero was kind enough to respond to a few of my questions on rare diseases and medical research. So, I’m sharing her thoughts below—I hope you are inspired by them as much as I was!

Why do you feel it is important for people with rare diseases to take part in medical research?

Without research, we can’t make any improvements, changes or find cures. Participating in medical research allows researchers and doctors to learn about the trends (or lack of) between patients, and determine what’s working and what’s not.

What have your own experiences been with the health-care system and medical research?

When I was younger, I really didn’t want to be a specimen. I was going through so much trying to find answers and treatments for myself that it was hard to think about how it would help other patients down the road to be sharing my experiences. I didn’t want to add another doctor’s visit to my schedule. After coming to NIH in 2012, I recognized the importance of being part of the research because it could essentially help me, other patients and for early detection of rare diseases. I recognize that the medical researchers are often much more compassionate than many doctors who simply treat symptoms. Researchers are curious and genuinely care to understand you and your story.

Your podcast is fantastic. How has it affected you to hear and share the stories of so many people affected by rare diseases?

I was definitely aware how many people were living with rare diseases, but I was surprised by how many people were willing to share their stories on my show and how many people wanted to listen to these stories. I hadn’t heard stories being shared in this way around this topic and I wanted to be the one who brought them to life. Many of my guests haven’t publicly (let alone with friends or family) shared their stories so I’m honored that they’re willing to do it with me. They see how important it is to have these conversations and to educate people on what it’s like to have an invisible illness.

What would you tell someone who’s just learned he or she has a rare disease?

You don’t have to do this alone! Find a team of medical professionals you trust to support you. I spent most of my life without a team of doctors that I loved and truly understood me, and now I can’t imagine my life without my team at NIH. Also, talk to your loved ones—let them know what you’re feeling and discuss how they can support you. This is likely new for them too and there’s no right way of navigating and managing a rare disease.

What would you tell a young person who’s considering becoming a rare disease researcher?

Thank you for your interest in doing this! We need more compassionate, curious and passionate people doing this work and investing their time to learn more and help find answers for rare diseases. Please treat us with respect and care.

If you could change one thing in the medical care/research of rare disease, what would it be? And what about in society in general?

There’s a way to do your job without treating patients like guinea pigs. We’re humans too, and we’re humans who have likely been through the wringer in the medical world. Be kind to us. Treat us the way you’d like to be treated. Compassion seems to be a word I’m using a lot. I think society can be more compassionate towards one another especially around rare disease. You can never fully understand what someone is going through so ask questions, show you care and treat people with kindness.

What are your hopes for the future?

I’d love there to be more answers and solutions for navigating a rare disease. A lot of the treatments I do are based on trial-and-error. What works for one patient definitely doesn’t always work for me. So, we’re constantly trying to navigate what works best for me. I’d love to see a cure to be found for Hyper IgE/Job’s Syndrome, as well as other rare diseases.

Links:

Podcast Series: Made Visible

NIH Patient Shares Stories of ‘Invisible Illness,The NIH Record, February 8, 2019

Hyper-Immunoglobulin E Syndrome (HIES) (National Institute of Allergy and Infectious Diseases/NIH)

Rare Disease Day at NIH 2019 (National Center for Advancing Translational Sciences/NIH)

Rare Diseases Are Not Rare! Challenge Offers New Tools to Raise Awareness. January 2019 (NCATS)

Video: Rare Disease Patient Profiles (NCATS)

Genetic and Rare Diseases Information Center (NCATS)

Undiagnosed Diseases Network (Common Fund/NIH)

Video: One in a Million (Undiagnosed Diseases Network, University of Utah Health, Salt Lake City)


More Progress Toward Gene Editing for Kids with Muscular Dystrophy

Posted on by

Normal and treated muscles with DMD
Caption: Muscles of untreated mouse model of Duchenne muscular dystrophy (left) compared to muscles of similar mice one year after gene-editing treatment (right). Dystrophin production (green) is restored in treated animals, despite therapy-related immune response to the Cas9 editing enzyme (dark spots in white inset). Credit: Charles Gersbach, Duke University, Durham, NC

Thanks to CRISPR and other gene editing technologies, hopes have never been greater for treating or even curing Duchenne muscular dystrophy (DMD) and many other rare, genetic diseases that once seemed tragically out of reach. The latest encouraging news comes from a study in which a single infusion of a CRISPR editing system produced lasting benefits in a mouse model of DMD.

There currently is no way to cure DMD, an ultimately fatal disease that mainly affects boys. Caused by mutations in a gene that codes for a critical protein called dystrophin, DMD progressively weakens the skeletal and heart muscles. People with DMD are usually in wheelchairs by the age of 10, with most dying before the age of 30.

The exquisite targeting ability of CRISPR/Cas9 editing systems rely on a sequence-specific guide RNA to direct a scissor-like, bacterial enzyme (Cas9) to just the right spot in the genome, where it can be used to cut out, replace, or repair disease-causing mutations. In previous studies in mice and dogs, researchers directly infused CRISPR systems directly into the animals bodies. This “in vivo” approach to gene editing successfully restored production of functional dystrophin proteins, strengthening animals’ muscles within weeks of treatment.

But an important question remained: would CRISPR’s benefits persist over the long term? The answer in a mouse model of DMD appears to be “yes,” according to findings published recently in Nature Medicine by Charles Gersbach, Duke University, Durham, NC, and his colleagues [1]. Specifically, the NIH-funded team found that after mice with DMD received one infusion of a specially designed CRISPR/Cas9 system, the abnormal gene was edited in a way that restored dystrophin production in skeletal and heart muscles for more than a year. What’s more, lasting improvements were seen in the structure of the animals’ muscles throughout the same time period.

As exciting as these results may be, much more research is needed to explore both the safety and the efficacy of in vivo gene editing before it can be tried in humans with DMD. For instance, the researchers found that older mice that received the editing system developed an immune response to the bacterially-derived Cas9 protein. However, this response didn’t prevent the CRISPR/Cas9 system from doing its job or appear to cause any adverse effects. Interestingly, younger animals didn’t show such a response.

It’s worth noting that the immune systems of mice and people often respond quite differently. But the findings do highlight some possible challenges of such treatments, as well as approaches to reduce possible side effects. For instance, the latest findings suggest CRISPR/Cas9 treatment might best be done early in life, before an infant’s immune system is fully developed. Also, if it’s necessary to deliver CRISPR/Cas9 to older individuals, it may be beneficial to suppress the immune system temporarily.

Another concern about CRISPR technology is the potential for damaging, “off-target” edits to other parts of the genome. In the new work, the Duke team found that its CRISPR system made very few “off-target” edits. However, the system did make a surprising number of complex edits to the targeted dystrophin gene, including integration of the viral vector used to deliver Cas9. While those editing “errors” might reduce the efficacy of treatment, researchers said they didn’t appear to affect the health of the mice studied.

It’s important to emphasize that this gene editing research aimed at curing DMD is being done in non-reproductive (somatic) cells, primarily muscle tissue. The NIH does not support the use of gene editing technologies in human embryos or human reproductive (germline) cells, which would change the genetic makeup of future offspring.

As such, the Duke researchers’ CRISPR/Cas9 system is designed to work optimally in a range of muscle and muscle-progenitor cells. Still, they were able to detect editing of the dystrophin-producing gene in the liver, kidney, brain, and other tissues. Importantly, there was no evidence of edits in the germline cells of the mice. The researchers note that their CRISPR system can be reconfigured to limit gene editing to mature muscle cells, although that may reduce the treatment’s efficacy.

It’s truly encouraging to see that CRISPR gene editing may confer lasting benefits in an animal model of DMD, but a great many questions remain before trying this new approach in kids with DMD. But that time is coming—so let’s boldly go forth and get answers to those questions on behalf of all who are affected by this heartbreaking disease.

Reference:

[1] Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA, Bohning JD, Robinson-Hamm JN, Bulaklak K, Castellanos Rivera RM, Collier JH, Asokan A, Gersbach CA. Nat Med. 2019 Feb 18.

Links:

Muscular Dystrophy Information Page (National Institute of Neurological Disorders and Stroke/NIH)

Gersbach Lab (Duke University, Durham, NC)

Somatic Cell Genome Editing (Common Fund/NIH)

NIH Support: National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institute of Biomedical Imaging and Bioengineering


Biomedical Research Highlighted in Science’s 2018 Breakthroughs

Posted on by

Science Breakthroughs of the Year 2018

A Happy New Year to one and all! While many of us were busy wrapping presents, the journal Science announced its much-anticipated scientific breakthroughs of 2018. In case you missed the announcement [1], it was another banner year for the biomedical sciences.

The 2018 Breakthrough of the Year went to biomedical science and its ability to track the development of life—one cell at a time—in a variety of model organisms. This newfound ability opens opportunities to understand the biological basis of life more systematically than ever before. Among Science’s “runner-up” breakthroughs, more than half had strong ties to the biomedical sciences and NIH-supported research.

Sound intriguing? Let’s take a closer look at some of the amazing science conducted in 2018, starting with Science’s Breakthrough of the Year.

Development Cell by Cell: For millennia, biologists have wondered how a single cell develops into a complete multicellular organism, such as a frog or a mouse. But solving that mystery was almost impossible without the needed tools to study development systematically, one cell at a time. That’s finally started to change within the last decade. I’ve highlighted the emergence of some of these powerful tools on my blog and the interesting ways that they were being applied to study development.

Over the past few years, all of this technological progress has come to a head. Researchers, many of them NIH-supported, used sophisticated cell labeling techniques, nucleic acid sequencing, and computational strategies to isolate thousands of cells from developing organisms, sequence their genetic material, and determine their location within that developing organism.

In 2018 alone, groundbreaking single-cell analysis papers were published that sequentially tracked the 20-plus cell types that arise from a fertilized zebrafish egg, the early formation of organs in a frog, and even the creation of a new limb in the Axolotl salamander. This is just the start of amazing discoveries that will help to inform us of the steps, or sometimes missteps, within human development—and suggest the best ways to prevent the missteps. In fact, efforts are now underway to gain this detailed information in people, cell by cell, including the international Human Cell Atlas and the NIH-supported Human BioMolecular Atlas Program.

An RNA Drug Enters the Clinic: Twenty years ago, researchers Andrew Fire and Craig Mello showed that certain small, noncoding RNA molecules can selectively block genes in our cells from turning “on” through a process called RNA interference (RNAi). This work, for the which these NIH grantees received the 2006 Nobel Prize in Physiology or Medicine, soon sparked a wave of commercial interest in various noncoding RNA molecules for their potential to silence the expression of a disease-causing gene.

After much hard work, the first gene-silencing RNA drug finally came to market in 2018. It’s called Onpattro™ (patisiran), and the drug uses RNAi to treat the peripheral nerve disease that can afflict adults with a rare disease called hereditary transthyretin-mediated amyloidosis. This hard-won success may spark further development of this novel class of biopharmaceuticals to treat a variety of conditions, from cancer to cardiovascular disorders, with potentially greater precision.

Rapid Chemical Structure Determination: Last October, two research teams released papers almost simultaneously that described an incredibly fast new imaging technique to determine the structure of smaller organic chemical compounds, or “small molecules“ at atomic resolution. Small molecules are essential components of molecular biology, pharmacology, and drug development. In fact, most of our current medicines are small molecules.

News of these papers had many researchers buzzing, and I highlighted one of them on my blog. It described a technique called microcrystal electron diffraction, or MicroED. It enabled these NIH-supported researchers to take a powder form of small molecules (progesterone was one example) and generate high-resolution data on their chemical structures in less than a half-hour! The ease and speed of MicroED could revolutionize not only how researchers study various disease processes, but aid in pinpointing which of the vast number of small molecules can become successful therapeutics.

How Cells Marshal Their Contents: About a decade ago, researchers discovered that many proteins in our cells, especially when stressed, condense into circumscribed aqueous droplets. This so-called phase separation allows proteins to gather in higher concentrations and promote reactions with other proteins. The NIH soon began supporting several research teams in their groundbreaking efforts to explore the effects of phase separation on cell biology.

Over the past few years, work on phase separation has taken off. The research suggests that this phenomenon is critical in compartmentalizing chemical reactions within the cell without the need of partitioning membranes. In 2018 alone, several major papers were published, and the progress already has some suggesting that phase separation is not only a basic organizing principle of the cell, it’s one of the major recent breakthroughs in biology.

Forensic Genealogy Comes of Age: Last April, police in Sacramento, CA announced that they had arrested a suspect in the decades-long hunt for the notorious Golden State Killer. As exciting as the news was, doubly interesting was how they caught the accused killer. The police had the Golden Gate Killer’s DNA, but they couldn’t determine his identity, that is, until they got a hit on a DNA profile uploaded by one of his relatives to a public genealogy database.

Though forensic genealogy falls a little outside of our mission, NIH has helped to advance the gathering of family histories and using DNA to study genealogy. In fact, my blog featured NIH-supported work that succeeded in crowdsourcing 600 years of human history.

The researchers, using the online profiles of 86 million genealogy hobbyists with their permission, assembled more than 5 million family trees. The largest totaled more than 13 million people! By merging each tree from the crowd-sourced and public data, they were able to go back about 11 generations—to the 15th century and the days of Christopher Columbus. Though they may not have caught an accused killer, these large datasets provided some novel insights into our family structures, genes, and longevity.

An Ancient Human Hybrid: Every year, researchers excavate thousands of bone fragments from the remote Denisova Cave in Siberia. One such find would later be called Denisova 11, or “Denny” for short.

Oh, what a fascinating genomic tale Denny’s sliver of bone had to tell. Denny was at least 13 years old and lived in Siberia roughly 90,000 years ago. A few years ago, an international research team found that DNA from the mitochondria in Denny’s cells came from a Neanderthal, an extinct human relative.

In 2018, Denny’s family tree got even more interesting. The team published new data showing that Denny was female and, more importantly, she was a first generation mix of a Neanderthal mother and a father who belonged to another extinct human relative called the Denisovans. The Denisovans, by the way, are the first human relatives characterized almost completely on the basis of genomics. They diverged from Neanderthals about 390,000 years ago. Until about 40,000 years ago, the two occupied the Eurasian continent—Neanderthals to the west, and Denisovans to the east.

Denny’s unique genealogy makes her the first direct descendant ever discovered of two different groups of early humans. While NIH didn’t directly support this research, the sequencing of the Neanderthal genome provided an essential resource.

As exciting as these breakthroughs are, they only scratch the surface of ongoing progress in biomedical research. Every field of science is generating compelling breakthroughs filled with hope and the promise to improve the lives of millions of Americans. So let’s get started with 2019 and finish out this decade with more truly amazing science!

Reference:

[1] “2018 Breakthrough of the Year,” Science, 21 December 2018.

NIH Support: These breakthroughs represent the culmination of years of research involving many investigators and the support of multiple NIH institutes.


Progeria International Scientific Workshop

Posted on by

Dr. Collins playing a guitar with children looking on.

I enjoyed presenting some of my lab’s work at the Progeria Research Foundation’s 9th International Scientific Workshop and later meeting with some of the kids in attendance. Here, I got to sing a song for 17-year-old Meghan (left) from the United States and 2-year-old Alptug (middle) from Turkey. The workshop was held in Cambridge, MA from September 20-22, 2018. Credit: Carol Moroney.


Creative Minds: Looking for Common Threads in Rare Diseases

Posted on by

Valerie Arboleda

Valerie Arboleda
Credit: UCLA/Margaret Sison Photography

Four years ago, Valerie Arboleda accomplished something most young medical geneticists rarely do. She helped discover a rare congenital disease now known as KAT6A syndrome [1]. From the original 10 cases to the more than 100 diagnosed today, KAT6A kids share a single altered gene that causes neuro-developmental delays, most prominently in learning to walk and talk, plus a spectrum of possible abnormalities involving the head, face, heart, and immune system.

Now, Arboleda wants to accomplish something even more groundbreaking. With a 2017 NIH Director’s Early Independence Award, she will develop ways to mine Big Data—the voluminous amounts of DNA sequence and other biological information now stored in public databases—to unearth new clues into the biology of rare disorders like KAT6A syndrome. If successful, Arboleda’s work could bring greater precision to the diagnosis and potentially treatment of Mendelian disorders, as well as provide greater clarity into the specific challenges that might lie ahead for an affected child.


Next Page