Skip to main content

MRSA

Dirt

Caption: Researchers found a new class of antibiotics in a collection of about 2,000 soil samples.
Credit: Sean Brady, The Rockefeller University, New York City

Many of us think of soil as lifeless dirt. But, in fact, soil is teeming with a rich array of life: microbial life. And some of those tiny, dirt-dwelling microorganisms—bacteria that produce antibiotic compounds that are highly toxic to other bacteria—may provide us with valuable leads for developing the new drugs we so urgently need to fight antibiotic-resistant infections.

Recently, NIH-funded researchers discovered a new class of antibiotics, called malacidins, by analyzing the DNA of the bacteria living in more than 2,000 soil samples, including many sent by citizen scientists living all across the United States [1]. While more work is needed before malacidins can be tried in humans, the compounds successfully killed several types of multidrug-resistant bacteria in laboratory tests. Most impressive was the ability of malacadins to wipe out methicillin-resistant Staphylococcus aureus (MRSA) skin infections in rats. Often referred to as a “super bug,” MRSA threatens the lives of tens of thousands of Americans each year [2].

(more…)

Posted In: Health, Science, technology

Tags: , , , , , , , , , , , , , , , ,

Klebsiella pneumoniae Bacteria

Caption: Colorized scanning-electron micrograph showing carbapenem-resistant Klebsiella pneumoniae interacting with a human white blood cell.
Credit: National Institute of Allergy and Infectious Diseases, NIH

Over the past year, the problem of antibiotic resistance has received considerable attention, with concerns being raised by scientists, clinicians, public health officials, and many others around the globe. These bacteria are found not only in hospitals, but in a wide range of community settings. In the United States alone, antibiotic-resistant bacteria cause roughly 2 million infections per year, and 23,000 deaths [1].

In light of such daunting statistics, the need for action at the highest levels is clear, as is demonstrated by an Executive Order issued today by the President. Fighting antibiotic resistance is both a public health and national security priority. The White House has joined together with leaders from government, academia, and public health to create a multi-pronged approach to combat antibiotic resistance. Two high-level reports released today—the White House’s National Strategy for Combating Antibiotic-Resistant Bacteria (CARB) and the complementary President’s Council of Advisors on Science and Technology (PCAST) Report to the President on Combating Antibiotic Resistance—outline a series of bold steps aimed at addressing this growing public health threat.

(more…)

Posted In: Health, Science

Tags: , , , , , , , , , , , , , , , , , , , , ,

Glowing image of MRSA toxin

Caption: MRSA toxin bound to nanosponge particles glows yellow inside a mouse immune cell. The cell membrane is stained red and the nucleus is stained blue.
Credit: Liangfang Zhang Laboratory, University of California, San Diego

Methicillin-resistant Staphylococcus aureus bacteria, commonly known as MRSA, pose a serious public health threat, causing more than 80,000 skin, lung, and blood infections and killing about 11,000 people annually in the United States [1]. This microbe wreaks its devastation by secreting a toxin, alpha-hemolysin, that punches holes in the membrane of cells, essentially causing them to leak to death. Now, NIH-funded researchers from the University of California, San Diego, have created tiny sponges capable of trapping and binding MRSA’s toxin [2]. When these toxin-laden sponges are injected into mice, they serve as a vaccine—that is, they stimulate the animal’s immune system in a way that protects them from the toxin’s deadly impact.

(more…)

Posted In: Science

Tags: , , , , , ,

colorized scanning electron micrograph of a white blood cell being infected by an antibiotic resistant strain of Staphylococcus aureus bacteria

Credit: Frank DeLeo, National Institute of Allergy and Infectious Diseases, NIH

At first glance, this image looks like something pulled from the files of NASA, not NIH. But, no, you are not looking at alien orbs on the rocky surface of some distant planet! This is a colorized scanning electron micrograph of a white blood cell eating an antibiotic resistant strain of Staphylococcus aureus bacteria, commonly known as MRSA.

MRSA stands for methicillin-resistant Staphylococcus aureus, and it’s one nasty bug. You’ve probably heard about the dangers of MRSA infections, but what’s the easiest way to prevent one? Just like with the flu, you should wash your hands – frequently! Personal hygiene is key. And while MRSA infections are more common in people with weakened immune systems, other folks, such as athletes who share towels, are also vulnerable. To learn more about MRSA and how to protect yourself and your loved ones from this increasingly common health risk, go to http://www.nlm.nih.gov/medlineplus/ency/article/007261.htm.

Posted In: Science

Tags: , , , , , , ,