Skip to main content

children

Insulin-Producing Organoids Offer Hope for Treating Type 1 Diabetes

Posted on by

Insulin-producing organoid
Caption: Human islet-like organoids express insulin (green). Credit: Salk Institute

For the 1 to 3 million Americans with type 1 diabetes, the immune system destroys insulin-producing beta cells of the pancreas that control the amount of glucose in the bloodstream. As a result, these individuals must monitor their blood glucose often and take replacement doses of insulin to keep it under control. Such constant attention, combined with a strict diet to control sugar intake, is challenging—especially for children.

For some people with type 1 diabetes, there is another option. They can be treated—maybe even cured—with a pancreatic islet cell transplant from an organ donor. These transplanted islet cells, which harbor the needed beta cells, can increase insulin production. But there’s a big catch: there aren’t nearly enough organs to go around, and people who receive a transplant must take lifelong medications to keep their immune system from rejecting the donated organ.

Now, NIH-funded scientists, led by Ronald Evans of the Salk Institute, La Jolla, CA, have devised a possible workaround: human islet-like organoids (HILOs) [1]. These tiny replicas of pancreatic tissue are created in the laboratory, and you can see them above secreting insulin (green) in a lab dish. Remarkably, some of these HILOs have been outfitted with a Harry Potter-esque invisibility cloak to enable them to evade immune attack when transplanted into mice.

Over several years, Doug Melton’s lab at Harvard University, Cambridge, MA, has worked steadily to coax induced pluripotent stem (iPS) cells, which are made from adult skin or blood cells, to form miniature islet-like cells in a lab dish [2]. My own lab at NIH has also been seeing steady progress in this effort, working with collaborators at the New York Stem Cell Foundation.

Although several years ago researchers could get beta cells to make insulin, they wouldn’t secrete the hormone efficiently when transplanted into a living mouse. About four years ago, the Evans lab found a possible solution by uncovering a genetic switch called ERR-gamma that when flipped, powered up the engineered beta cells to respond continuously to glucose and release insulin [3].

In the latest study, Evans and his team developed a method to program HILOs in the lab to resemble actual islets. They did it by growing the insulin-producing cells alongside each other in a gelatinous, three-dimensional chamber. There, the cells combined to form organoid structures resembling the shape and contour of the islet cells seen in an actual 3D human pancreas. After they are switched on with a special recipe of growth factors and hormones, these activated HILOs secrete insulin when exposed to glucose. When transplanted into a living mouse, this process appears to operate just like human beta cells work inside a human pancreas.

Another major advance was the invisibility cloak. The Salk team borrowed the idea from cancer immunotherapy and a type of drug called a checkpoint inhibitor. These drugs harness the body’s own immune T cells to attack cancer. They start with the recognition that T cells display a protein on their surface called PD-1. When T cells interact with other cells in the body, PD-1 binds to a protein on the surface of those cells called PD-L1. This protein tells the T cells not to attack. Checkpoint inhibitors work by blocking the interaction of PD-1 and PD-L1, freeing up immune cells to fight cancer.

Reversing this logic for the pancreas, the Salk team engineered HILOs to express PD-L1 on their surface as a sign to the immune system not to attack. The researchers then transplanted these HILOs into diabetic mice that received no immunosuppressive drugs, as would normally be the case to prevent rejection of these human cells. Not only did the transplanted HILOs produce insulin in response to glucose spikes, they spurred no immune response.

So far, HILOs transplants have been used to treat diabetes for more than 50 days in diabetic mice. More research will be needed to see whether the organoids can function for even longer periods of time.

Still, this is exciting news, and provides an excellent example of how advances in one area of science can provide new possibilities for others. In this case, these insights provide fresh hope for a day when children and adults with type 1 diabetes can live long, healthy lives without the need for frequent insulin injections.

References:

[1] Immune-evasive human islet-like organoids ameliorate diabetes. [published online ahead of print, 2020 Aug 19]. Yoshihara E, O’Connor C, Gasser E, Wei Z, Oh TG, Tseng TW, Wang D, Cayabyab F, Dai Y, Yu RT, Liddle C, Atkins AR, Downes M, Evans RM. Nature. 2020 Aug 19. [Epub ahead of publication]

[2] Generation of Functional Human Pancreatic β Cells In Vitro. Pagliuca FW, Millman JR, Gürtler M, Segel M, Van Dervort A, Ryu JH, Peterson QP, Greiner D, Melton DA. Cell. 2014 Oct 9;159(2):428-39.

[3] ERRγ is required for the metabolic maturation of therapeutically functional glucose-responsive β cells. Yoshihara E, Wei Z, Lin CS, Fang S, Ahmadian M, Kida Y, Tseng T, Dai Y, Yu RT, Liddle C, Atkins AR, Downes M, Evans RM. Cell Metab. 2016 Apr 12; 23(4):622-634.

Links:

Type 1 Diabetes (National Institute of Diabetes and Digestive and Kidney Diseases/NIH)

Pancreatic Islet Transplantation (National Institute of Diabetes and Digestive and Kidney Diseases)

The Nobel Prize in Physiology or Medicine 2012” for Induced Pluripotent Stem Cells, The Nobel Prize news release, October 8, 2012.

Evans Lab (Salk Institute, La Jolla, CA)

NIH Support: National Institute of Diabetes and Digestive and Kidney Diseases; National Cancer Institute


Study Ties COVID-19-Related Syndrome in Kids to Altered Immune System

Posted on by

Very sick child
Credit: iStock/Sasiistock

Most children infected with SARS-CoV-2, the virus that causes COVID-19, develop only a mild illness. But, days or weeks later, a small percentage of kids go on to develop a puzzling syndrome known as multisystem inflammatory syndrome in children (MIS-C). This severe inflammation of organs and tissues can affect the heart, lungs, kidneys, brain, skin, and eyes.

Thankfully, most kids with MIS-C respond to treatment and make rapid recoveries. But, tragically, MIS-C can sometimes be fatal.

With COVID-19 cases in children having increased by 21 percent in the United States since early August [2], NIH and others are continuing to work hard on getting a handle on this poorly understood complication. Many think that MIS-C isn’t a direct result of the virus, but seems more likely to be due to an intense autoimmune response. Indeed, a recent study in Nature Medicine [1] offers some of the first evidence that MIS-C is connected to specific changes in the immune system that, for reasons that remain mysterious, sometimes follow COVID-19.

These findings come from Shane Tibby, a researcher at Evelina London Children’s Hospital, London. United Kingdom; Manu Shankar-Hari, a scientist at Guy’s and St Thomas’ NHS Foundation Trust, London; and colleagues. The researchers enlisted 25 children, ages 7 to 14, who developed MIS-C in connection with COVID-19. In search of clues, they examined blood samples collected from the children during different stages of their care, starting when they were most ill through recovery and follow-up. They then compared the samples to those of healthy children of the same ages.

What they found was a complex array of immune disruptions. The children had increased levels of various inflammatory molecules known as cytokines, alongside raised levels of other markers suggesting tissue damage—such as troponin, which indicates heart muscle injury.

The neutrophils, monocytes, and other white blood cells that rapidly respond to infections were activated as expected. But the levels of certain white blood cells called T lymphocytes were paradoxically reduced. Interestingly, despite the low overall numbers of T lymphocytes, particular subsets of them appeared activated as though fighting an infection. While the children recovered, those differences gradually disappeared as the immune system returned to normal.

It has been noted that MIS-C bears some resemblance to an inflammatory condition known as Kawasaki disease, which also primarily affects children. While there are similarities, this new work shows that MIS-C is a distinct illness associated with COVID-19. In fact, only two children in the study met the full criteria for Kawasaki disease based on the clinical features and symptoms of their illness.

Another recent study from the United Kingdom, reported several new symptoms of MIS-C [3]. They include headaches, tiredness, muscle aches, and sore throat. Researchers also determined that the number of platelets was much lower in the blood of children with MIS-C than in those without the condition. They proposed that evaluating a child’s symptoms along with his or her platelet level could help to diagnose MIS-C.

It will now be important to learn much more about the precise mechanisms underlying these observed changes in the immune system and how best to treat or prevent them. In support of this effort, NIH recently announced $20 million in research funding dedicated to the development of approaches that identify children at high risk for developing MIS-C [4].

The hope is that this new NIH effort, along with other continued efforts around the world, will elucidate the factors influencing the likelihood that a child with COVID-19 will develop MIS-C. Such insights are essential to allow doctors to intervene as early as possible and improve outcomes for this potentially serious condition.

References:

[1] Peripheral immunophenotypes in children with multisystem inflammatory syndrome associated with SARS-CoV-2 infection. Carter MJ, Fish M, Jennings A, Doores KJ, Wellman P, Seow J, Acors S, Graham C, Timms E, Kenny J, Neil S, Malim MH, Tibby SM, Shankar-Hari M. Nat Med. 2020 Aug 18.

[2] Children and COVID-19: State-Level Data Report. American Academy of Pediatrics. August 24, 2020.

[3] Clinical characteristics of children and young people admitted to hospital with covid-19 in United Kingdom: prospective multicentre observational cohort study. Swann OV, Holden KA, Turtle L, Harrison EW, Docherty AB, Semple MG, et al. Br Med J. 2020 Aug 17.

[4] NIH-funded project seeks to identify children at risk for MIS-C. NIH. August 7, 2020.

Links:

Coronavirus (COVID-19) (NIH)

Kawasaki Disease (Genetic and Rare Disease Information Center/National Center for Advancing Translational Sciences/NIH)

Shane Tibby (Evelina London Children’s Hospital, London)

Manu Shankar-Hari (King’s College, London)

NIH Support: Eunice Kennedy Shriver National Institute of Child Health and Human Development; Office of the Director; National Heart, Lung, and Blood Institute; National Institute of Allergy and Infectious Diseases; National Institute of Arthritis and Musculoskeletal and Skin Diseases; National Institute on Drug Abuse; National Institute of Minority Health and Health Disparities; Fogarty International Center


What We Know About COVID-19’s Effects on Child and Maternal Health

Posted on by

At Home with Diana Bianchi

There’s been a lot of focus, and rightly so, on why older adults and adults with chronic disease appear to be at increased risk for coronavirus disease 2019 (COVID-19). Not nearly as much seems to be known about children and COVID-19.

For example, why does SARS-CoV-2, the novel coronavirus that causes COVID-19, seem to affect children differently than adults? What is the psychosocial impact of the pandemic on our youngsters? Are kids as infectious as adults?

A lot of interesting research in this area has been published recently. That includes the results of a large study in South Korea in which researchers traced the person-to-person spread of SARS-CoV-2 in the early days of the pandemic. The researchers found children younger than age 10 spread the virus to others much less often than adults do, though the risk is not zero. But children age 10 to 19 were found to be just as infectious as adults. That obviously has consequences for the current debate about opening the schools.

To get some science-based answers to these and other questions, I recently turned to one of the world’s leading child health researchers: Dr. Diana Bianchi, Director of NIH’s Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD). Dr. Bianchi is a pediatrician with expertise in newborn medicine, neonatology, and reproductive genetics. Here’s a condensed transcript of our chat, which took place via videoconference, with Diana linking in from Boston and me from my home in Chevy Chase, MD:

Collins: What is the overall risk of children getting COVID-19? We initially heard they’re at very low risk. [NOTE: Since the recording of this interview, new data has emerged from state health departments that suggest that as much as 10 percent of new cases of COVID-19 occur in children.]

Bianchi: Biological factors certainly play some role. We know that the virus often enters the body via cells in the nasal passage. A recent study showed that, compared to adults, children’s nasal cells have less of the ACE2 receptor, which the virus attaches to and uses to infect cells. In children, the virus probably has less of an opportunity to grab onto cells and get into the upper respiratory tract.

Importantly, social reasons also play a role in that low percentage. Children have largely been socially isolated since March, when many schools shut down. By and large, young kids have been either home or playing in their backyards.

Collins: If kids do get infected with SARS-CoV-2, the virus that causes COVID-19, what kind of symptoms are displayed?

Bianchi: Children tend to be affected mildly. Relatively few children end up in intensive care units. The most common symptoms are: fever, in about 60 percent of children; cough; and a mild respiratory illness. It’s a different clinical presentation. Children seem to be more prone to vomiting, diarrhea, severe abdominal pain, and other gastrointestinal problems.

Collins: Are children as infectious as adults?

Bianchi: We suspect that older kids probably are. A recently published meta-analysis, or systematic review of the medical literature, also found about 20 percent of infected kids are asymptomatic. There are probably a lot of kids out there who can potentially infect others.

Collins: Do you see a path forward here for schools in the fall?

Bianchi: I think the key word is flexibility. We must remain flexible in the months ahead. Children have struggled from being out of school, and it’s not just the educational loss. It’s the whole support system, which includes the opportunity to exercise. It includes the opportunity to have teachers and school staff looking objectively at the kids to see if they are psychologically well.

The closing of schools has also exacerbated disparities. Schools provide meals for many kids in need, and some have had a lot of food insecurity for the past several months. Not to mention kids in homeless situations often don’t have access to the internet and other learning tools. So, on the whole, being in school is better for children than not being there. That’s how most pediatricians see it. However, we don’t want to put children at risk for getting sick.

Collins: Can you say a little bit more about the consequences, particularly for young children, of being away from their usual areas of social interaction? That’s true this summer as well. Camps that normally would be a place where lots of kids would congregate have either been cancelled or are being conducted in a very different way.

Bianchi: Thus far, most of the published information that we have has really been on the infection and the clinical presentations. Ultimately, I think there will be a lot of information about the behavioral and developmental consequences of not being exposed to other children. I think that older children are also really suffering from not having a daily structure, for example, through sports.

For younger children, they need to learn how to socialize. There are advantages to being with your parents. But there are a lot of social skills that need to be learned without them. People talk about the one-eyed babysitter, YouTube. The American Academy of Pediatrics has issued recommendations for limiting screen time. That’s gone out the window. I’ve talked with a lot of my staff members who are struggling with this balance between educating or entertaining their children and having so-called quality time, and the responsibility to do their jobs.

Collins: What about children with disabilities? Are they in a particularly vulnerable place?

Bianchi: Absolutely. Sadly, we don’t hear a lot about children with disabilities as a vulnerable population. Neither do we hear a lot about the consequences of them not receiving needed services. So many children with disabilities rely on people coming into their homes, whether it’s to help with respiratory care or to provide physical or speech therapy. Many of these home visits are on hold during the pandemic, and that can cause serious problems. For example, you can’t suction a trachea remotely. Of course, you can do speech therapy remotely, but that’s not ideal for two reasons. First, face-to-face interactions are still better, and, secondly, disparities can factor into the equation. Not all kids with disabilities have access to the internet or all the right equipment for online learning.

Collins: Tell me a little bit more about a rare form of consequences from COVID-19, this condition called MIS-C, Multi-System Inflammatory Syndrome of Children. I don’t think anybody knew anything about that until just a couple of months ago.

Bianchi: Even though there were published reports of children infected with SARS-CoV-2 in China in January, we didn’t hear until April about this serious new inflammatory condition. Interestingly, none of the children infected with SARS-CoV-2 in China or Japan are reported to have developed MIS-C. It seemed to be something that was on the European side, predominantly the United Kingdom, Italy, and France. And then, starting in April and May, it was seen in New York and the northeastern United States.

The reason it’s of concern is that many of these children are gravely ill. I mentioned that most children have a mild illness, but the 0.5 percent who get the MIS-C are seriously ill. Almost all require admission to the ICU. The scary thing is they can turn on a dime. They present with more of a prolonged fever. They can have very severe abdominal pain. In some cases, children have been thought to have appendicitis, but they don’t. They have serious cardiac issues and go into shock.

The good news is the majority survive. Many require ventilators and blood-pressure support. But they do respond to treatment. They tend to get out of the hospital in about a week. However, in two studies of MIS-C recently published in New England Journal of Medicine, six children died out of 300 children. So that’s what we want to avoid.

Collins: In terms of the cause, there’s something puzzling about MIS-C. It doesn’t seem to be a direct result of the viral infection. It seems to come on somewhat later, almost like there’s some autoimmune response.

Bianchi: Yes, that’s right. MIS-C does tend to occur, on an average, three to four weeks later. The NIH hosted a conference a couple weeks ago where the top immunologists in the world were talking about MIS-C, and everybody has their piece of the elephant in terms of a hypothesis. We don’t really know right now, but it does seem to be associated with some sort of exuberant, post-infectious inflammatory response.

Is it due to the fact that the virus is still hiding somewhere in the body? Is the body reacting to the virus with excessive production of antibodies? We don’t know. That will be determined, hopefully, within weeks or months.
Collins: And I know that your institute is taking a leading role in studying MIS-C.

Bianchi: Yes. Very shortly after the first cases of MIS-C were being described in the United States, you asked me and Gary Gibbons, director of NIH’s National Heart Lung and Blood Institute, to cochair a taskforce to develop a study designed to address MIS-C. Staff at both institutes have been working, in collaboration with NIH’s National Institute of Allergy and Infectious Diseases, to come up with the best possible way to approach this public health problem.

The study consists of a core group of kids who are in the hospital being treated for MIS-C. We’re obtaining biospecimens and are committed to a central platform and data-sharing. There’s an arm of the study that’s looking at long-term issues. These kids have transient coronary artery dilation. They have a myocarditis. They have markers of heart failure. What does that imply long-term for the function of their hearts?

We will also be working with several existing networks to identify markers suggesting that a certain child is at risk. Is it an underlying immune issue, or is it ethnic background? Is it this a European genomic variant? Exactly what should we be concerned about?

Collins: Let me touch on the genomics part of this for a minute, and that requires a brief description. The SARS-CoV-2 novel coronavirus is crowned in spiky proteins that attach to our cells before infecting them. These spike proteins are made of many amino acids, and their precise sequential order can sometimes shift in subtle ways.

Within that sequential order at amino acid 614, a shift has been discovered. The original Chinese isolate, called the D version, had aspartic acid there. It seems the virus that spread from Asia to the U.S. West Coast also has aspartic acid in that position. But the virus that traveled to Italy and then to the East Coast of the U.S. has a glycine there. It’s called the G version.

There’s been a lot of debate about whether this change really matters. More data are starting to appear suggesting that the G version may be more infectious than the D version, although I’ve seen no real evidence of any difference in severity between the two.

Of course, if the change turned out to be playing a role in MIS-C, you would expect not to have seen so many cases on the West Coast. Has anyone looked to see if kids with the D version of the virus ever get MIS-C?

Bianchi: It hasn’t been reported. You could say that maybe we don’t get all the information from China. But we do get it from Japan. In Japan, they’ve had the D version, and they haven’t had MIS-C.

Collins: Let’s talk about expectant mothers. What is the special impact of COVID-19 on them?

Bianchi: Recently, a lot of information has come out about pregnant women and the developing fetus. A recent report from the Centers for Disease Control and Prevention suggested that pregnant women are at a greatly increased risk of hospitalization. However, the report didn’t divide out hospitalizations that would be expected for delivering a baby from hospitalizations related to illness. But the report did show that pregnant women are at a higher risk of needing respiratory support and having serious illness, particularly if there is an underlying chronic condition, such as chronic lung disease, diabetes or hypertension.

Collins: Do we know the risk of the mother transmitting the coronavirus to the fetus?

Bianchi: What we know so far is the risk of transmission from mother to baby appears to be small. Now, that’s based on the fact that available studies seem to suggest that the ACE2 receptor that the virus uses to bind to our cells, is not expressed in third trimester placental tissue. That doesn’t mean it’s not expressed earlier in gestation. The placenta is so dynamic in terms of gene expression.

What we do know is there’s a lot of ACE2 expression in the blood vessels. An interesting recent study showed in the third trimester placenta, the blood vessels had taken a hit. There was actual blood vessel damage. There was evidence of decreased oxygenation in the placenta. We don’t know the long-term consequences for the baby, but the placentas did not look healthy.

Collins: I have a friend whose daughter recently was ready to deliver her baby. As part of preparing for labor, she had a COVID-19 test. To her surprise and dismay, she was positive, even though she had no symptoms. She went ahead with the delivery, but then the baby was separated from her for a time because of a concern about the mother transmitting the virus to her newborn. Is separation widely recommended?

Bianchi: I think most hospitals are softening on this. [NOTE: The American Academy of Pediatrics recently issued revised recommendations about labor and delivery, as well as about breastfeeding, during COVID-19]

In the beginning, hospitals took a hard line. For example, no support people were allowed into the delivery room. So, women were having more home deliveries, which are far more dangerous, or signing up to give birth at hospitals that allowed support people.

Now more hospitals are allowing a support person in the room during delivery. But, in general, they are recommending that the mother and the support person get tested. If they’re negative, everything’s fine. If the support person is positive, he or she’s not allowed to come in. If the mother is positive, the baby is separated, generally, for testing. In many hospitals, mothers are given the option of reuniting with the baby.

There’s also been a general discussion about mothers who test positive breastfeeding. The more conservative recommendation is to pump the milk and allow somebody else to bottle-feed the baby while the mother recovers from the infection. I should also mention a recent meta-analysis in the United Kingdom. It suggested that a cesarean section delivery is not needed because of SARS-CoV-2 positivity alone. It also found there’s no reason for SARS-CoV-2 positive women not to breast feed.

Collins: Well, Diana, thank you so much for sharing your knowledge. If there’s one thing you wanted parents to take away from this conversation, what would that be?

Bianchi: Well, I think it’s natural to be concerned during a pandemic. But I think parents should be generally reassuring to their children. We’ll get through this. However, I would also say that if a parent notices something unusual going on with a child—skin rashes, the so-called blue COVID toes, or a prolonged fever—don’t mess around. Get your child medical attention as soon as possible. Bad things can happen very quickly to children infected with this virus.

For the expectant parents, hopefully, their obstetricians are counseling them about the fact that they are at high risk. I think that women with chronic conditions really need to be proactive. If they’re not feeling well, they need to go to the emergency room. Again, things can happen quickly with this virus.

But the good news is the babies seem to do very well. There’s no evidence of birth defects so far, and very limited evidence, if at all, of vertical transmission. I think they can feel good about their babies. They need to pay attention to themselves.

Collins: Thank you, Diana, for ending on those wise words.

Bianchi: Thanks, Francis.

Links:

Coronavirus (COVID-19) (NIH)

Diana W. Bianchi, MD, Biosketch of the NICHD Director (Eunice Kennedy Shriver National Institute of Child Health and Human Development/NIH)

Responding to COVID-19, Director’s Corner, NICHD, June 3, 2020

National Child & Maternal Health Education Program (NICHD)

Pregnancy (NICHD)


Dealing with Stress, Anxiety, and Grief during COVID-19

Posted on by

Zoom conversation between Joshua Gordon and Francis Collins

If somebody had told you last year that that our country, along with the whole world, would soon be facing a major health challenge like the coronavirus disease 2019 (COVID-19) pandemic, you’d have thought it almost unimaginable. Yet here we are.

To help flatten the pandemic’s deadly curve, a great many of us have been asked to remain at home. I have been faithfully adhering to that recommendation—I haven’t been to my office or lab at NIH in almost three weeks, though I can’t remember a time where I have worked harder. While helping to protect ourselves and others, this physical distancing can affect our mental well-being.

Recently, I had an opportunity to discuss these aspects of COVID-19 with Dr. Joshua Gordon, Director of NIH’s National Institute of Mental Health. Our conversation took place via videoconferencing, with him linking in from his home in the New York area and me from my home in Maryland. Here’s a condensed transcript of our chat:

Collins: So, Josh, tell me how you’re doing there. How’s everybody coping?

Gordon: Right now, my family and I are doing fine. My daughter and I are ensconced here at home, both working from home. She’s finishing up high school online and my wife works for New York City. She’s an essential employee, so she’s still going into work but, fortunately, she’s able to make sure that her workspace is very sparse and she’s able to commute by herself.

Collins: I’m glad you’re okay. Exactly how do you name this kind of stress that everybody’s feeling right now? Is it fear? Is it anxiety about being put in such an area of uncertainty? Is it just grief, the sense that something really profound has happened here and we are losing things in terms of our ability to move around freely? Certainly, we also grieve deeply about the suffering and the death that we see.

Gordon: For different people, it’s different combinations. I know that I feel anxiety for myself and my family in terms of our health. But it’s not just anxiety about contracting the coronavirus, it’s also fear and anxiety about what’s happening to society, what’s happening to our economy, what’s happening to our friends and relatives.

And then there is tremendous grief. We’ve acknowledged that we’ve all lost something already. Right? We’ve lost our normal day-to-day interactions. We’ve lost our ability to physically connect with people and it makes it more challenging to socially connect with people. And we’ve lost that sense of certainty and self-power.

Collins: Talking to my wife Diane about this, I think the grief part of it was something we were both feeling, but hadn’t quite named. Somehow being able to talk about it, experience it, and not try to run away from it turned out to be helpful.

Gordon: Yes, it’s important to talk about it. For most people, it’s a matter of being able to talk about your feelings, get it out into the open, and hear from others that are going through the same thing. They’re your friends that you’re Zooming with, they’re your parents or grandparents that you’re talking to on the phone.

Collins: I hope everybody will feel a little more free to be honest about what they are going through. Maybe sometimes we try to just be tough and keep it all to ourselves and don’t want others around us to be influenced, if we’re talking about our own emotions. But we need to share those things. Besides that, what other things, can be helpful to people who are trying to cope with the current circumstances?

Gordon: One important thing is to focus on the facts. There’s a lot of rumor, there’s a lot of hyperbole out there, and there’s a lot of, frankly, uncertainty. But to the extent that you can, learn and share the facts about the virus. If you know what’s happening, it reduces the uncertainty.

At the same time, one can get so taken up with reading the daily news, listening to the various news conferences that are going on, checking the websites, etc., that it becomes all-consuming. So, it’s really important to set aside periods of each day where you turn off social media, you turn off the TV, turn off the news, and do something that you enjoy. It could be art, it could be exercise, it could be picking up the phone and talking to someone about something other than COVID.

The other thing that’s really important is to take care of your body in addition to your mind. Taking care of your body can help your mind do better. So, yoga, exercise, resting, naps, regular meals, all these things can be helpful. Alcohol is often used as an escape mechanism when you’re feeling stressed. That can be a little tricky or dangerous, so try to avoid drinking excessively.

Connecting with others is really important in this day of physical distancing. I like to call it physical distancing, rather than social distancing, because I think we can be socially intimate and physically distant. So, connect with others, reach out to people, use digital tools, use telephones, use email and text, write a letter.

Collins: A letter?

Gordon: Yes, why not? I haven’t gotten mail for three days. Just saying. So, write a letter, connect with people that you can unwind with, that you can get joy from.

Collins: My wife Diane just stepped in and I want to have her to come over for a minute and say something about this, because I think part of the grief we were feeling was this disconnection from face-to-face interactions with people. Diane’s a very sociable person and this is particularly hard when you’re so isolated in one place. But she came up with something yesterday that seemed to be a help.

Diane Baker: Yes. I’ve got to say, the shelter in place order here in Maryland just surprised me. It took me down a couple of notches and I can’t say it was warranted, I was like I can’t take this. Even though it’s what we’ve been doing, it just emotionally really got to me. And so a friend came up with this idea. She went for a walk in her neighborhood, I went for a walk in my neighborhood, we pulled our phones out and we had a conversation. Even though it was cold rainy day, we didn’t mind it because we were talking to each other. So, we’re going to try and do that on a regular basis.

Gordon: You’re right, your social connectedness really helps. Like I can reach out to my parents in North Carolina, I can reach out to my brother in Philadelphia. We’ve had almost nightly Zoom get-togethers and I actually feel like I’m seeing my relatives more these last couple of weeks than I have in months.

Collins: That’s interesting. We’ve done that too. Every Sunday now we have a Zoom meeting with my daughters and my grandkids.

Diane Baker: The other thing I think it’s done is forced us to be more intentional about our communication. I think that’s something we take for granted. For instance, I have this book club I’ve been a part of for a long time, but we always talk books and politics and topical issues. Now, I’m starting to reach out to them on email and say, “Hey, I’m having a real tough time,” and we’re supporting each other in a way that we haven’t before. It’s been very nice. I’ll let you guys go on..

Gordon: Nice to see you, Diane.

Collins: I think we all feel this urge to do something, to try to contribute in some way. In many ways, we feel a little paralyzed by the fact that we’re stuck indoors and all of the things you might like to do might be risky for yourself or other people. What can we do as far as actions to help other people?

Gordon: Those of you who are working directly on COVID can take a lot of pride in the fact that you’re contributing to that mission. But everyone is contributing to that mission by staying home. I would add a more practical bent to all this, which is that it is important to set goals and priorities for yourself. Finally, there are volunteer opportunities that can be done remotely. There are donations that are being accepted. So, I encourage you, if you feel so moved and have the means to do so, contribute in that way.

Collins: Parents are worried about their kids in terms of how this is affecting them. So, what kind of advice can you give to parents about how to interact with children in this very unusual situation?

Gordon: Kids are, I’m sure, feeling anxious. First, recognize what they’re going through. Talk to them about it, find out what’s concerning them.

Kids always surprise you. They’re not necessarily anxious or worried about the things that you’re anxious or worried about. They might be worried about getting COVID, but they might also just be worried that they’re going to miss their best friend’s birthday next week. So, if you find out what’s bothering them, then you can help them. You can have them Zoom a happy birthday song or connect in some other way.

Reassuring them can help. But, more importantly, it’s just answering their questions as honestly as you can. When you don’t know, admit that you don’t, but say that you’ll be there for them.

Collins: Everybody is facing a certain amount of stress, anxiety, and grief at this time, but it hits some people even harder. What would be the signs that this is getting into a circumstance that might require some additional help?

Gordon: Let’s talk about how we recognize when this might be a thing that we can’t deal with and that is sending us over the edge. I went out grocery shopping last Friday. I managed to find a mask to wear and gloves, but I actually couldn’t take it. I was so anxious. I bought a few things and I had to leave. I felt in me something I’ve really never felt before. My heart started racing, I started breathing fast. I was getting a panic attack. That was something pushing me over the edge in ways that I hadn’t been challenged before.

If that happens to you, recognize it and seek help. So, what are the signs? We’re all feeling anxious, but if you feel so anxious you can’t get your work done, you actually can’t do the thing that you set out to do, reach out for help either from a friend or from a professional. Other signs would be you’re starting to withdraw from people, having trouble sleeping, change in appetite, change in physical energy levels, or starting to become irritable or angry.

For those with pre-existing mental illnesses, it’s really important that they reach out to their providers and find ways of connecting. Every mental health provider that I know of right now is moving to telehealth sessions. Not everyone is used to teleconferences, not everyone knows how to use them. So, plan in advance with your provider how you’re going to contact with them so that you can get the help you need when you need it. Make sure that you have enough medication in-house and work out with your pharmacy how you can get it delivered rather than having to go pick it up, whether that’s from a mail order pharmacy or getting your local pharmacy to deliver to you.

Finally, there are hot lines. For those experiencing distress with the COVID epidemic, the Substance Abuse and Mental Health Service Administration has the Disaster Distress Helpline. That’s 800-985-5990 or text “TalkWithUs” to 66746. For those who are really struggling, and are thinking of hurting or killing themselves, there’s the National Suicide Prevention Lifeline at 800-273-8255 or you can text “HOME” to the Crisis Text Line at 741741.

Collins: Before we close, I’d like to talk about how, despite the stress, the anxiety, and the grief that we’re all feeling, we might somehow learn something pretty significant about ourselves during this pandemic. Can you say something about that?

Gordon: One thing we know is that resilience isn’t necessarily about something you already have. It’s something that you learn, that people who’ve been through challenging times and risen to the occasion, they learn from that. They become resilient. They learn how to get through challenging situations in the future.

For many of us, this is an opportunity to learn more about ourselves and how we can grow as people, as human beings, and as fathers and mothers and daughters and sons. This is an opportunity to prove that we can respond to an emergency like this in a way that is thoughtful, in a way that is caring, and in a way that contributes to improving the situation for all of us

Collins: It does call us, doesn’t it, to focus on things that in our daily rush of business as usual, we neglect to think about. What are we really here for? What’s the meaning of all of this? What is our responsibility to try to make the world a better place?

I’d predict that all of us who are living through this COVID-19 experience will look back on it as a time of special significance in terms of what we learned about ourselves and about the perspective of what really matters in this world. So, yes, it’s stressful, it’s full of grief and sorrow, but maybe it’s a way in which you can gain something to carry forward. Josh, thank you so much.

Resources:

The Disaster Distress Helpline, 1-800-985-5990 (Substance Abuse and Mental Health Services Administration)

National Suicide Prevention Lifeline, 1-800-273-8255

Crisis Text Line, 741741

Coping with Coronavirus: Managing Stress, Fear, and Anxiety, Director’s Messages (National Institute of Mental Health/NIH)

Stress and Coping, Coronavirus (Centers for Disease Control and Prevention)

Coronavirus (COVID-19) (NIH)


Celebrating 2019 Biomedical Breakthroughs

Posted on by

Science 2019 Biomedical Breakthroughs and a Breakdown

Happy New Year! As we say goodbye to the Teens, let’s take a look back at 2019 and some of the groundbreaking scientific discoveries that closed out this remarkable decade.

Each December, the reporters and editors at the journal Science select their breakthrough of the year, and the choice for 2019 is nothing less than spectacular: An international network of radio astronomers published the first image of a black hole, the long-theorized cosmic singularity where gravity is so strong that even light cannot escape [1]. This one resides in a galaxy 53 million light-years from Earth! (A light-year equals about 6 trillion miles.)

Though the competition was certainly stiff in 2019, the biomedical sciences were well represented among Science’s “runner-up” breakthroughs. They include three breakthroughs that have received NIH support. Let’s take a look at them:

In a first, drug treats most cases of cystic fibrosis: Last October, two international research teams reported the results from phase 3 clinical trials of the triple drug therapy Trikafta to treat cystic fibrosis (CF). Their data showed Trikafta effectively compensates for the effects of a mutation carried by about 90 percent of people born with CF. Upon reviewing these impressive data, the Food and Drug Administration (FDA) approved Trikafta, developed by Vertex Pharmaceuticals.

The approval of Trikafta was a wonderful day for me personally, having co-led the team that isolated the CF gene 30 years ago. A few years later, I wrote a song called “Dare to Dream” imagining that wonderful day when “the story of CF is history.” Though we’ve still got more work to do, we’re getting a lot closer to making that dream come true. Indeed, with the approval of Trikafta, most people with CF have for the first time ever a real chance at managing this genetic disease as a chronic condition over the course of their lives. That’s a tremendous accomplishment considering that few with CF lived beyond their teens as recently as the 1980s.

Such progress has been made possible by decades of work involving a vast number of researchers, many funded by NIH, as well as by more than two decades of visionary and collaborative efforts between the Cystic Fibrosis Foundation and Aurora Biosciences (now, Vertex) that built upon that fundamental knowledge of the responsible gene and its protein product. Not only did this innovative approach serve to accelerate the development of therapies for CF, it established a model that may inform efforts to develop therapies for other rare genetic diseases.

Hope for Ebola patients, at last: It was just six years ago that news of a major Ebola outbreak in West Africa sounded a global health emergency of the highest order. Ebola virus disease was then recognized as an untreatable, rapidly fatal illness for the majority of those who contracted it. Though international control efforts ultimately contained the spread of the virus in West Africa within about two years, over 28,600 cases had been confirmed leading to more than 11,000 deaths—marking the largest known Ebola outbreak in human history. Most recently, another major outbreak continues to wreak havoc in northeastern Democratic Republic of Congo (DRC), where violent civil unrest is greatly challenging public health control efforts.

As troubling as this news remains, 2019 brought a needed breakthrough for the millions of people living in areas susceptible to Ebola outbreaks. A randomized clinical trial in the DRC evaluated four different drugs for treating acutely infected individuals, including an antibody against the virus called mAb114, and a cocktail of anti-Ebola antibodies referred to as REGN-EB3. The trial’s preliminary data showed that about 70 percent of the patients who received either mAb114 or the REGN-EB3 antibody cocktail survived, compared with about half of those given either of the other two medicines.

So compelling were these preliminary results that the trial, co-sponsored by NIH’s National Institute of Allergy and Infectious Diseases (NIAID) and the DRC’s National Institute for Biomedical Research, was halted last August. The results were also promptly made public to help save lives and stem the latest outbreak. All Ebola patients in the DRC treatment centers now are treated with one or the other of these two options. The trial results were recently published.

The NIH-developed mAb114 antibody and the REGN-EB3 cocktail are the first therapeutics to be shown in a scientifically rigorous study to be effective at treating Ebola. This work also demonstrates that ethically sound clinical research can be conducted under difficult conditions in the midst of a disease outbreak. In fact, the halted study was named Pamoja Tulinde Maisha (PALM), which means “together save lives” in Kiswahili.

To top off the life-saving progress in 2019, the FDA just approved the first vaccine for Ebola. Called Ervebo (earlier rVSV-ZEBOV), this single-dose injectable vaccine is a non-infectious version of an animal virus that has been genetically engineered to carry a segment of a gene from the Zaire species of the Ebola virus—the virus responsible for the current DRC outbreak and the West Africa outbreak. Because the vaccine does not contain the whole Zaire virus, it can’t cause Ebola. Results from a large study in Guinea conducted by the WHO indicated that the vaccine offered substantial protection against Ebola virus disease. Ervebo, produced by Merck, has already been given to over 259,000 individuals as part of the response to the DRC outbreak. The NIH has supported numerous clinical trials of the vaccine, including an ongoing study in West Africa.

Microbes combat malnourishment: Researchers discovered a few years ago that abnormal microbial communities, or microbiomes, in the intestine appear to contribute to childhood malnutrition. An NIH-supported research team followed up on this lead with a study of kids in Bangladesh, and it published last July its groundbreaking finding: that foods formulated to repair the “gut microbiome” helped malnourished kids rebuild their health. The researchers were able to identify a network of 15 bacterial species that consistently interact in the gut microbiomes of Bangladeshi children. In this month-long study, this bacterial network helped the researchers characterize a child’s microbiome and/or its relative state of repair.

But a month isn’t long enough to determine how the new foods would help children grow and recover. The researchers are conducting a similar study that is much longer and larger. Globally, malnutrition affects an estimated 238 million children under the age 5, stunting their normal growth, compromising their health, and limiting their mental development. The hope is that these new foods and others adapted for use around the world soon will help many more kids grow up to be healthy adults.

Measles Resurgent: The staff at Science also listed their less-encouraging 2019 Breakdowns of the Year, and unfortunately the biomedical sciences made the cut with the return of measles in the U.S. Prior to 1963, when the measles vaccine was developed, 3 to 4 million Americans were sickened by measles each year. Each year about 500 children would die from measles, and many more would suffer lifelong complications. As more people were vaccinated, the incidence of measles plummeted. By the year 2000, the disease was even declared eliminated from the U.S.

But, as more parents have chosen not to vaccinate their children, driven by the now debunked claim that vaccines are connected to autism, measles has made a very preventable comeback. Last October, the Centers for Disease Control and Prevention (CDC) reported an estimated 1,250 measles cases in the United States at that point in 2019, surpassing the total number of cases reported annually in each of the past 25 years.

The good news is those numbers can be reduced if more people get the vaccine, which has been shown repeatedly in many large and rigorous studies to be safe and effective. The CDC recommends that children should receive their first dose by 12 to 15 months of age and a second dose between the ages of 4 and 6. Older people who’ve been vaccinated or have had the measles previously should consider being re-vaccinated, especially if they live in places with low vaccination rates or will be traveling to countries where measles are endemic.

Despite this public health breakdown, 2019 closed out a memorable decade of scientific discovery. The Twenties will build on discoveries made during the Teens and bring us even closer to an era of precision medicine to improve the lives of millions of Americans. So, onward to 2020—and happy New Year!

Reference:

[1] 2019 Breakthrough of the Year. Science, December 19, 2019.

NIH Support: These breakthroughs represent the culmination of years of research involving many investigators and the support of multiple NIH institutes.


Next Page