Skip to main content

wound healing

3D Printing a Human Heart Valve

Posted on by

It is now possible to pull up the design of a guitar on a computer screen and print out its parts on a 3D printer equipped with special metal or plastic “inks.” The same technological ingenuity is also now being applied with bioinks—printable gels containing supportive biomaterials and/or cells—to print out tissue, bone, blood vessels, and, even perhaps one day, viable organs.

While there’s a long way to go until then, a team of researchers has reached an important milestone in bioprinting collagen and other extracellular matrix proteins that undergird every tissue and organ in the body. The researchers have become so adept at it that they now can print biomaterials that mimic the structural, mechanical, and biological properties of real human tissues.

Take a look at the video. It shows a life-size human heart valve that’s been printed with their improved collagen bioink. As fluid passes through the aortic valve in a lab test, its three leaf-like flaps open and close like the real thing. All the while, the soft, flexible valve withstands the intense fluid pressure, which mimics that of blood flowing in and out of a beating heart.

The researchers, led by NIH grantee Adam Feinberg, Carnegie Mellon University, Pittsburgh, PA, did it with their latest version of a 3D bioprinting technique featured on the blog a few years ago. It’s called: Freeform Reversible Embedding of Suspended Hydrogels v.2.0. Or, just FRESH v2.0.

The FRESH system uses a bioink that consists of collagen (or other soft biomaterials) embedded in a thick slurry of gelatin microparticles and water. While a number of technical improvements have been made to FRESH v. 2.0, the big one was getting better at bioprinting collagen.

The secret is to dissolve the collagen bioink in an acid solution. When extruded into a neutral support bath, the change in pH drives the rapid assembly of collagen. The ability to extrude miniscule amounts and move the needle anywhere in 3D space enables them to produce amazingly complex, high-resolution structures, layer by layer. The porous microstructure of the printed collagen also helps for incorporating human cells. When printing is complete, the support bath easily melts away by heating to body temperature.

As described in Science, in addition to the working heart valve, the researchers have printed a small model of a heart ventricle. By combining collagen with cardiac muscle cells, they found they could actually control the organization of muscle tissue within the model heart chamber. The 3D-printed ventricles also showed synchronized muscle contractions, just like you’d expect in a living, beating human heart!

That’s not all. Using MRI images of an adult human heart as a template, the researchers created a complete organ structure including internal valves, large veins, and arteries. Based on the vessels they could see in the MRI, they printed even tinier microvessels and showed that the structure could support blood-like fluid flow.

While the researchers have focused the potential of FRESH v.2.0 printing on a human heart, in principle the technology could be used for many other organ systems. But there are still many challenges to overcome. A major one is the need to generate and incorporate billions of human cells, as would be needed to produce a transplantable human heart or other organ.

Feinberg reports more immediate applications of the technology on the horizon, however. His team is working to apply FRESH v.2.0 for producing child-sized replacement tracheas and precisely printed scaffolds for healing wounded muscle tissue.

Meanwhile, the Feinberg lab generously shares its designs with the scientific community via the NIH 3D Print Exchange. This innovative program is helping to bring more 3D scientific models online and advance the field of bioprinting. So we can expect to read about many more exciting milestones like this one from the Feinberg lab.

Reference:

[1] 3D bioprinting of collagen to rebuild components of the human heart. Lee A, Hudson AR, Shiwarski DJ, Tashman JW, Hinton TJ, Yerneni S, Bliley JM, Campbell PG, Feinberg AW. Science. 2019 Aug 2;365(6452):482-487.

Links:

Tissue Engineering and Regenerative Medicine (National Institute of Biomedical Imaging and Bioengineering/NIH)

Regenerative Biomaterials and Therapeutics Group (Carnegie Mellon University, Pittsburgh, PA)

FluidForm (Acton, MA)

3D Bioprinting Open Source Workshops (Carnegie Mellon)

Video: Adam Feinberg on Tissue Engineering to Treat Human Disease (YouTube)

NIH 3D Print Exchange

NIH Support: National Heart, Lung, and Blood Institute; Eunice Kennedy Shriver National Institute of Child Health and Human Development; Common Fund


Building a Smarter Bandage

Posted on by

Smart Bandage

Credit: Tufts University, Medford, MA

Smartphones, smartwatches, and smart electrocardiograms. How about a smart bandage?

This image features a prototype of a smart bandage equipped with temperature and pH sensors (lower right) printed directly onto the surface of a thin, flexible medical tape. You also see the “brains” of the operation: a microprocessor (upper left). When the sensors prompt the microprocessor, it heats up a hydrogel heating element in the bandage, releasing drugs and/or other healing substances on demand. It can also wirelessly transmit messages directly to a smartphone to keep patients and doctors updated.

While the smart bandage might help mend everyday cuts and scrapes, it was designed with the intent of helping people with hard-to-heal chronic wounds, such as leg and foot ulcers. Chronic wounds affect millions of Americans, including many seniors [1]. Such wounds are often treated at home and, if managed incorrectly, can lead to infections and potentially serious health problems.


Snapshots of Life: Healing Spinal Cord Injuries

Posted on by

Nerve cell on a nanofiber gel

Credit: Mark McClendon, Zaida Alvarez Pinto, Samuel I. Stupp, Northwestern University, Evanston, IL

When someone suffers a fully severed spinal cord, it’s considered highly unlikely the injury will heal on its own. That’s because the spinal cord’s neural tissue is notorious for its inability to bridge large gaps and reconnect in ways that restore vital functions. But the image above is a hopeful sight that one day that could change.

Here, a mouse neural stem cell  (blue and green) sits in a lab dish, atop a special gel containing a mat of synthetic nanofibers (purple). The cell is growing and sending out spindly appendages, called axons (green), in an attempt to re-establish connections with other nearby nerve cells.


Regenerative Medicine: New Clue from Fish about Healing Spinal Cord Injuries

Posted on by

Zebrafish Spinal Cord

Caption: Tissue section of zebrafish spinal cord regenerating after injury. Glial cells (red) cross the gap between the severed ends first. Neuronal cells (green) soon follow. Cell nuclei are stained blue and purple.
Credit: Mayssa Mokalled and Kenneth Poss, Duke University, Durham, NC

Certain organisms have remarkable abilities to achieve self-healing, and a fascinating example is the zebrafish (Danio rerio), a species of tropical freshwater fish that’s an increasingly popular model organism for biological research. When the fish’s spinal cord is severed, something remarkable happens that doesn’t occur in humans: supportive cells in the nervous system bridge the gap, allowing new nerve tissue to restore the spinal cord to full function within weeks.

Pretty incredible, but how does this occur? NIH-funded researchers have just found an important clue. They’ve discovered that the zebrafish’s damaged cells secrete a molecule known as connective tissue growth factor a (CTGFa) that is essential in regenerating its severed spinal cord. What’s particularly encouraging to those looking for ways to help the 12,000 Americans who suffer spinal cord injuries each year is that humans also produce a form of CTGF. In fact, the researchers found that applying human CTGF near the injured site even accelerated the regenerative process in zebrafish. While this growth factor by itself is unlikely to produce significant spinal cord regeneration in human patients, the findings do offer a promising lead for researchers pursuing the next generation of regenerative therapies.


Cool Videos: Regenerating Nerve Fibers

Posted on by

If you enjoy action movies, you can probably think of a superhero—maybe Wolverine?—who can lose a limb in battle, yet grow it right back and keep on going. But could regenerating a lost limb ever happen in real life? Some scientists are working hard to understand how other organisms do this.

As shown in this video of a regenerating fish fin, biology can sometimes be stranger than fiction. The zebrafish (Danio rerio), which is a species of tropical freshwater fish that’s an increasingly popular model organism for biological research, is among the few vertebrates that can regrow body parts after they’ve been badly damaged or even lost. Using time-lapse photography over a period of about 12 hours, NIH grantee Sandra Rieger, now at MDI Biological Laboratory, Bar Harbor, ME, used a fluorescent marker (green) to track a nerve fiber spreading through the skin of a zebrafish tail fin (gray). The nerve regeneration was occurring in tissue being spontaneously formed to replace a section of a young zebrafish’s tail fin that had been lopped off 3 days earlier.

Along with other tools, Rieger is using such imaging to explore how the processes of nerve regeneration and wound healing are coordinated. The researcher started out by using a laser to sever nerves in a zebrafish’s original tail fin, assuming that the nerves would regenerate—but they did not! So, she went back to the drawing board and discovered that if she also used the laser to damage some skin cells in the tail fin, the nerves regenerated. Rieger suspects the answer to the differing outcomes lies in the fact that the fish’s damaged skin cells release hydrogen peroxide, which may serve as a critical prompt for the regenerative process [1]. Rieger and colleagues went on discover that the opposite is also true: when they used a cancer chemotherapy drug to damage skin cells in a zebrafish tail fin, it contributed to the degeneration of the fin’s nerve fibers [2].

Based on these findings, Rieger wants to see whether similar processes may be going on in the hands and feet of cancer patients who struggle with painful nerve damage, called peripheral neuropathy, caused by certain chemotherapy drugs, including taxanes and platinum compounds. For some people, the pain and tingling can be so severe that doctors must postpone or even halt cancer treatment. Rieger is currently working with a collaborator to see if two protective molecules found in the zebrafish might be used to reduce or prevent chemotherapy-induced peripheral neuropathy in humans.

In recent years, a great deal of regenerative medicine has focused on learning to use stem cell technologies to make different kinds of replacement tissue. Still, as Rieger’s work demonstrates, there remains much to be gained from studying model organisms, such as the zebrafish and axolotl salamander, that possess the natural ability to regenerate limbs, tissues, and even internal organs. Now, that’s a super power we’d all like to have.

Reference:

[1] Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. Rieger S, Sagasti A. PLoS Biol. 2011 May;9(5):e1000621

[2] Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Lisse TS, Middleton LJ, Pellegrini AD, Martin PB, Spaulding EL, Lopes O, Brochu EA, Carter EV, Waldron A, Rieger S. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2189-E2198.

Links:

Chemotherapy-Induced Peripheral Neuropathy (National Cancer Institute/NIH)

Learning About Human Biology From a Fish (National Institute of General Medical Sciences/NIH)

Sandra Rieger (MDI Biological Laboratory, Bar Harbor, ME)

NIH Support: National Institute of Dental and Craniofacial Research; National Institute of General Medical Sciences; National Institute of Neurological Disorders and Stroke


Next Page