Skip to main content

bioprinting

Modeling Hypertrophic Cardiomyopathy in a Dish

Posted on by

Image of cardiac fibers

Credit: Zhen Ma, University of California, Berkeley

Researchers have learned in recent years how to grow miniature human hearts in a dish. These “organoids” beat like the real thing and have allowed researchers to model many key aspects of how the heart works. What’s been really tough to model in a dish is how stresses on hearts that are genetically abnormal, such as in inherited familial cardiomyopathies, put people at greater risk for cardiac problems.

Enter the lab-grown human cardiac tissue pictured above. This healthy tissue comprised of the heart’s muscle cells, or cardiomyocytes (green, nuclei in red), was derived from induced pluripotent stem (iPS) cells. These cells are derived from adult skin or blood cells that are genetically reprogrammed to have the potential to develop into many different types of cells, including cardiomyocytes.


Building a Better Scaffold for 3D Bioprinting

Posted on by

A bioprinted coronary artery

Caption: A bioprinted coronary artery.
Credit: Carnegie Mellon University

When the heart or another part of the body fails, a transplant is sometimes the only option. Still, the demand for donated organs far outpaces supply, with thousands of people on waiting lists. Furthermore, transplants currently require long term immunosuppression to prevent rejection. Wouldn’t it be even better to create the needed body part from the individual’s own cells? While it may sound too good to be true, research is moving us closer to the day when it may be possible to use 3D printing technology to meet some of this demand, as well as address a variety of other biomedical challenges.

In a study published in the journal Science Advances [1], an NIH-funded team from Carnegie Mellon University, Pittsburgh, recently modified an off-the-shelf 3D printer to create gel-like scaffolds that could be seeded with living cells to produce coronary arteries, an embryonic heart, and a variety of other tissues and organs.These researchers, of course, aren’t the only ones making progress in the rapidly emerging field of bioprinting. Using more costly, highly specialized 3D printing systems, other groups have crafted customized joints, bones, and splints out of hard, synthetic materials [2], as well as produced tissues and miniature organs by printing and layering sheets of human cells [3]. What distinguishes the new approach is its more affordable printer; its open-source software; and, perhaps most importantly, its ability to print soft, biological scaffolds that set the stage for the creation of custom-made tissues and organs with unprecedented anatomical detail.