Skip to main content

wearable biosensors

Building a Smarter Bandage

Posted on by

Smart Bandage

Credit: Tufts University, Medford, MA

Smartphones, smartwatches, and smart electrocardiograms. How about a smart bandage?

This image features a prototype of a smart bandage equipped with temperature and pH sensors (lower right) printed directly onto the surface of a thin, flexible medical tape. You also see the “brains” of the operation: a microprocessor (upper left). When the sensors prompt the microprocessor, it heats up a hydrogel heating element in the bandage, releasing drugs and/or other healing substances on demand. It can also wirelessly transmit messages directly to a smartphone to keep patients and doctors updated.

While the smart bandage might help mend everyday cuts and scrapes, it was designed with the intent of helping people with hard-to-heal chronic wounds, such as leg and foot ulcers. Chronic wounds affect millions of Americans, including many seniors [1]. Such wounds are often treated at home and, if managed incorrectly, can lead to infections and potentially serious health problems.


Got a Great Research Idea? “All of Us” Wants to Hear It!

Posted on by

PeopleOne of the boldest undertakings that NIH has ever attempted, the All of Us Research Program has been hard at work in a “beta” testing phase, and is now busy gearing up for full recruitment in the spring. This historic effort will enroll 1 million or more people in the United States to share information about their health, habits, and what it’s like where they live. This information will be part of a resource that scientists can use to accelerate research and improve health. How? By taking into account individual differences in lifestyle, environment, and biology, researchers will uncover paths toward realizing the full potential of precision medicine.

Before embarking on this adventure, All of Us is reaching out to prospective researchers, community organizations, and citizen scientists—including people just like you—to get their input. Imagine that the project has already enrolled 1 million participants from all over the country and from diverse backgrounds. Imagine that they have all agreed to make available their electronic health records, to put on wearable sensors that can track body physiology and environmental exposures, and to provide blood samples for lab testing, including DNA analysis. Is there a particular research question that you think All of Us could help answer? Possible topics include risks of disease, factors that promote wellness, and research on human behavior, prevention, exercise, genetics, environmental health effects, health disparities, and more. To submit an idea, just go to this special All of Us web page.


Built for the Future. Study Shows Wearable Devices Can Help Detect Illness Early

Posted on by

Michael Snyder wearing monitors

Caption: Stanford University’s Michael Snyder displays some of his wearable devices.
Credit: Steve Fisch/Stanford School of Medicine

Millions of Americans now head out the door each day wearing devices that count their steps, check their heart rates, and help them stay fit in general. But with further research, these “wearables” could also play an important role in the early detection of serious medical conditions. In partnership with health-care professionals, people may well use the next generation of wearables to monitor vital signs, blood oxygen levels, and a wide variety of other measures of personal health, allowing them to see in real time when something isn’t normal and, if unusual enough, to have it checked out right away.

In the latest issue of the journal PLoS Biology [1], an NIH-supported study offers an exciting glimpse of this future. Wearing a commercially available smartwatch over many months, more than 40 adults produced a continuous daily stream of accurate personal health data that researchers could access and monitor. When combined with standard laboratory blood tests, these data—totaling more than 250,000 bodily measurements a day per person—can detect early infections through changes in heart rate.