Skip to main content


Can Blood Thinners Keep Moderately Ill COVID-19 Patients Out of the ICU?

Posted on by

Blood Clot
Credit: iStock

One of many troubling complications of infection with SARS-CoV-2, the coronavirus that causes COVID-19, is its ability to trigger the formation of multiple blood clots, most often in older people but sometimes in younger ones, too. It raises the question of whether and when more aggressive blood thinning treatments might improve outcomes for people hospitalized for COVID-19.

The answer to this question is desperately needed to help guide clinical practice. So, I’m happy to report interim results of three large clinical trials spanning four continents and more than 300 hospitals that are beginning to provide critical evidence on this very question [1]. While it will take time to reach a solid consensus, the findings based on more than 1,000 moderately ill patients suggest that full doses of blood thinners are safe and can help to keep folks hospitalized with COVID-19 from becoming more severely ill and requiring some form of organ support.

The results that are in so far suggest that individuals hospitalized, but not severely ill, with COVID-19 who received a full intravenous dose of the common blood thinner heparin were less likely to need vital organ support, including mechanical ventilation, compared to those who received the lower “prophylactic” subcutaneous dose. It’s important to note that these findings are in contrast to results announced last month indicating that routine use of a full dose of blood thinner for patients already critically ill and in the ICU wasn’t beneficial and may even have been harmful in some cases [2]. This is a compelling example of how critical it is to stratify patients with different severity in clinical trials—what might help one subgroup might be of no benefit, or even harmful, in another.

More study is clearly needed to sort out all the details about when more aggressive blood thinning treatment is warranted. Trial investigators are now working to make the full results available to help inform a doctor’s decisions about how to best to treat their patients hospitalized with COVID-19. It’s worth noting that these trials are overseen by independent review boards, which routinely evaluate the data and are composed of experts in ethics, biostatistics, clinical trials, and blood clotting disorders.

These clinical trials were made possible in part by the Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) public-private partnership and its ACTIV-4 Antithrombotics trials—along with similar initiatives in Canada, Australia, and the European Union. The ACTIV-4 trials are overseen by the NIH’s National Heart, Lung, and Blood institute and funded by Operation Warp Speed.

This ACTIV-4 trial is one of three Phase 3 clinical trials evaluating the safety and effectiveness of blood thinners for patients with COVID-19 [3]. Another ongoing trial is investigating whether blood thinners are beneficial for newly diagnosed COVID-19 patients who do not require hospitalization. There are also plans to explore the use of blood thinners for patients after they’ve been discharged from the hospital following a diagnosis of moderate to severe COVID-19 and to establish more precise methods for identifying which patients with COVID-19 are most at risk for developing life-threatening blood clots.

Meanwhile, research teams are exploring other potentially promising ways to repurpose existing therapeutics and improve COVID-19 outcomes. In fact, the very day that these latest findings on blood thinners were announced, another group at The Montreal Heart Institute, Canada, announced preliminary results of the international COLCORONA trial, testing the use of colchicine—an anti-inflammatory drug widely used to treat gout and other conditions—for patients diagnosed with COVID-19 [4].

Their early findings in treating patients just after a confirmed diagnosis of COVID-19 suggest that colchicine might reduce the risk of death or hospitalization compared to patients given a placebo. In the more than 4,100 individuals with a proven diagnosis of COVID-19, colchicine significantly reduced hospitalizations by 25 percent, the need for mechanical ventilation by 50 percent, and deaths by 44 percent. Still, the actual numbers of individuals represented by these percentages was small.

Time will tell whether and for which patients colchicine and blood thinners prove most useful in treating COVID-19. For those answers, we’ll have to await the analysis of more data. But the early findings on both treatment strategies come as a welcome reminder that we continue to make progress each day on such critical questions about which existing treatments can be put to work to improve outcomes for people with COVID-19. Together with our efforts to slow the spread of SARS-CoV-2, finding better ways to treat those who do get sick and prevent some of the worst outcomes will help us finally put this terrible pandemic behind us.


[1] Full-dose blood thinners decreased need for life support and improved outcome in hospitalized COVID-19 patients. National Heart, Lung, and Blood Institute. January 22, 2021.

[2] NIH ACTIV trial of blood thinners pauses enrollment of critically ill COVID-19 patients. National Heart, Lung, and Blood Institute. December 22, 2020.

[3] NIH ACTIV initiative launches adaptive clinical trials of blood-clotting treatments for COVID-19. National Heart, Lung, and Blood Institute. September 10, 2020.

[4] Colchicine reduces the risk of COVID-19-related complications. The Montreal Heart Institute. January 22, 2021.


COVID-19 Research (NIH)

Combat COVID (U.S. Department of Health and Human Services, Washington, D.C.)

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) (NIH)

NIH Support: National Heart, Lung, and Blood Institute

Two Studies Show COVID-19 Antibodies Persist for Months

Posted on by

Antibodies against SARS-CoV-2
Caption: Artistic rendering of SARS-CoV-2 virus (orange) covered with antibodies (white), generated by an immune B cell (gray) at the bottom left. Credit: iStock/selvanegra

More than 8 million people in the United States have now tested positive for COVID-19. For those who’ve recovered, many wonder if fending off SARS-CoV-2—the coronavirus that causes COVID-19—one time means their immune systems will protect them from reinfection. And, if so, how long will this “acquired immunity” last?

The early data brought hope that acquired immunity was possible. But some subsequent studies have suggested that immune protection might be short-lived. Though more research is needed, the results of two recent studies, published in the journal Science Immunology, support the early data and provide greater insight into the nature of the human immune response to this coronavirus [1,2].

The new findings show that people who survive a COVID-19 infection continue to produce protective antibodies against key parts of the virus for at least three to four months after developing their first symptoms. In contrast, some other antibody types decline more quickly. The findings offer hope that people infected with the virus will have some lasting antibody protection against re-infection, though for how long still remains to be determined.

In one of the two studies, partly funded by NIH, researchers led by Richelle Charles, Massachusetts General Hospital, Boston, sought a more detailed understanding of antibody responses following infection with SARS-CoV-2. To get a closer look, they enrolled 343 patients, most of whom had severe COVID-19 requiring hospitalization. They examined their antibody responses for up to 122 days after symptoms developed and compared them to antibodies in more than 1,500 blood samples collected before the pandemic began.

The researchers characterized the development of three types of antibodies in the blood samples. The first type was immunoglobulin G (IgG), which has the potential to confer sustained immunity. The second type was immunoglobulin A (IgA), which protects against infection on the body’s mucosal surfaces, such as those found in the respiratory and gastrointestinal tracts, and are found in high levels in tears, mucus, and other bodily secretions. The third type is immunoglobulin M (IgM), which the body produces first when fighting an infection.

They found that all three types were present by about 12 days after infection. IgA and IgM antibodies were short-lived against the spike protein that crowns SARS-CoV-2, vanishing within about two months.

The good news is that the longer-lasting IgG antibodies persisted in these same patients for up to four months, which is as long as the researchers were able to look. Levels of those IgG antibodies also served as an indicator for the presence of protective antibodies capable of neutralizing SARS-CoV-2 in the lab. Even better, that ability didn’t decline in the 75 days after the onset of symptoms. While longer-term study is needed, the findings lend support to evidence that protective antibody responses against the novel virus do persist.

The other study came to very similar conclusions. The team, led by Jennifer Gommerman and Anne-Claude Gingras, University of Toronto, Canada, profiled the same three types of antibody responses against the SARS-CoV-2 spike protein, They created the profiles using both blood and saliva taken from 439 people, not all of whom required hospitalization, who had developed COVID-19 symptoms from 3 to 115 days prior. The team then compared antibody profiles of the COVID-19 patients to those of people negative for COVID-19.

The researchers found that the antibodies against SARS-CoV-2 were readily detected in blood and saliva. IgG levels peaked about two weeks to one month after infection, and then remained stable for more than three months. Similar to the Boston team, the Canadian group saw IgA and IgM antibody levels drop rapidly.

The findings suggest that antibody tests can serve as an important tool for tracking the spread of SARS-CoV-2 through our communities. Unlike tests for the virus itself, antibody tests provide a means to detect infections that occurred sometime in the past, including those that may have been asymptomatic. The findings from the Canadian team further suggest that tests of IgG antibodies in saliva may be a convenient way to track a person’s acquired immunity to COVID-19.

Because IgA and IgM antibodies decline more quickly, testing for these different antibody types also could help to distinguish between an infection within the last two months and one that more likely occurred even earlier. Such details are important for filling in gaps in our understanding COVID-19 infections and tracking their spread in our communities.

Still, there are rare reports of individuals who survived one bout with COVID-19 and were infected with a different SARS-CoV-2 strain a few weeks later [3]. The infrequency of such reports, however, suggests that acquired immunity after SARS-CoV-2 infection is generally protective.

There remain many open questions, and answering them will require conducting larger studies with greater diversity of COVID-19 survivors. So, I’m pleased to note that the NIH’s National Cancer Institute (NCI) recently launched the NCI Serological Sciences Network for COVID19 (SeroNet), now the nation’s largest coordinated effort to characterize the immune response to COVID-19 [4].

The network was established using funds from an emergency Congressional appropriation of more than $300 million to develop, validate, improve, and implement antibody testing for COVID-19 and related technologies. With help from this network and ongoing research around the world, a clearer picture will emerge of acquired immunity that will help to control future outbreaks of COVID-19.


[1] Persistence and decay of human antibody responses to the receptor binding domain of SARS-CoV-2 spike protein in COVID-19 patients. Iyer AS, Jones FK, Nodoushani A, Ryan ET, Harris JB, Charles RC, et al. Sci Immunol. 2020 Oct 8;5(52):eabe0367.

[2] Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients. Isho B, Abe KT, Zuo M, Durocher Y, McGeer AJ, Gommerman JL, Gingras AC, et al. Sci Immunol. 2020 Oct 8;5(52):eabe5511.

[3] What reinfections mean for COVID-19. Iwasaki A. Lancet Infect Dis, 2020 October 12. [Epub ahead of print]

[4] NIH to launch the Serological Sciences Network for COVID-19, announce grant and contract awardees. National Institutes of Health. 2020 October 8.


Coronavirus (COVID-19) (NIH)

Charles Lab (Massachusetts General Hospital, Boston)

Gingras Lab (University of Toronto, Canada)

Jennifer Gommerman (University of Toronto, Canada)

NCI Serological Sciences Network for COVID-19 (SeroNet) (National Cancer Institute/NIH)

NIH Support: National Institute of Allergy and Infectious Diseases; National Institute of General Medical Sciences; National Cancer Institute

Discussing the Long Arc of Discovery with NIH’s Newest Nobelist

Posted on by

Discussion with Dr. Harvey Alter

It’s been a tough year for our whole world because of everything that’s happening as a result of the coronavirus disease 2019 (COVID-19) pandemic. Yet there are bright spots that still shine through, and this week brought some fantastic news about NIH-supported researchers being named 2020 Nobel Prize Laureates for their pioneering work in two important fields: Chemistry and Physiology or Medicine.

In the wee hours of Wednesday morning, NIH grantee Jennifer A. Doudna, a biochemist at the University of California, Berkeley, got word that she and Emmanuelle Charpentier, a microbiologist at the Max Planck Institute for Infection Biology, Berlin, Germany, had won the 2020 Nobel Prize in Chemistry for developing the CRISPR/cas approach to genome editing. Doudna has received continuous NIH funding since 1997, mainly from the National Institute of General Medical Sciences and National Human Genome Research Institute.

The CRISPR/cas system, which consists of a short segment of RNA attached to the cas enzyme, provides the ability to make very precise changes in the sequence, or spelling, of the genetic instruction books of humans and other species. If used to make non-heritable edits in relevant tissues, such technology holds enormous potential to treat or even cure a wide range of devastating diseases, including thousands of genetic disorders where the DNA misspelling is precisely known.

Just two days before Doudna learned of her big award, a scientist who’s spent almost his entire career at the NIH campus in Bethesda, MD, received news that he too was getting a Nobel—the 2020 Nobel Prize in Physiology or Medicine. Harvey Alter, a senior scholar in the NIH Clinical Center’s Transfusion Medicine Department, was recognized for his contributions in identifying the potentially deadly hepatitis C virus. He shares this year’s prize with Michael Houghton, now with University of Alberta, Edmonton, and Charles M. Rice, The Rockefeller University, New York, who’s received continuous NIH funding since 1987, mainly from the National Institute of Allergy and Infectious Diseases.

In a long arc of discovery rooted in basic, translational, and clinical research that spanned several decades, Alter and his colleagues doggedly pursued biological clues that at first led to tests, then life-saving treatments, and, today, the very real hope of eradicating the global health threat posed by hepatitis C infections.

We at NIH are particularly proud of the fact that Alter is the sixth Nobel Prize winner—and the first in 26 years—to have done the entirety of his award-winning research in our Intramural Research Program. So, I jumped at the opportunity to talk with Harvey on NIH’s Facebook Live and Twitter chats just hours after he got the good news on Monday. Here’s a condensed version of our conversation, which took place on the NIH campus, but at a safe physical distance to minimize the risk of COVID-19 spread.

Collins: Harvey, let me start off by asking, how did you find out you’d won the Nobel Prize?

Alter: At 4:15 this morning. I was asleep and heard the telephone ringing. I ignored it. Five minutes later, I got another call. Now, I’m getting kind of perturbed. But I ignored it, thinking the call must be some kind of solicitation. Then, the phone rang a third time. I answered it, prepared to tell the person on the other end not to call me anymore. I heard a man’s voice say, “I’m the Secretary General of the Nobel Prize, calling you from Stockholm.” At that point, I just froze.

Collins: Did you think it might be a hoax?

Alter: No, I didn’t think it was a hoax. But I wasn’t expecting to win the prize. I knew about three years ago that I’d been on a Nobel list. But it didn’t happen, and I just forgot about it. Truthfully, I didn’t know that today was the day that the announcement was being made. The news came as a complete shock.

Collins: Please say a few words about viral hepatitis. What is it?

Alter: Sure. Viral hepatitis is an infection of the liver that causes inflammation and can lead to scarring, or cirrhosis. Early in my career, two viruses were known to cause the disease. One was the hepatitis A virus. You got it from consuming contaminated water or food. The second was the hepatitis B virus, which has a blood-borne transmission, typically from blood transfusions. In the 1970s, we realized that some other agent was causing most of the hepatitis from blood transfusions. Since it wasn’t A and it wasn’t B, we cleverly decided to call it: non-A, non-B. We did that because we hadn’t yet proven that the causative agent was a virus.

Collins: So, even though you screened donor units for the hepatitis B virus to eliminate tainted blood, people were still getting hepatitis from blood transfusions. How did you go about trying to solve this mystery?

Alter: The main thing was to follow patients prospectively, meaning forward in time. We drew a blood sample before they were transfused, and then serially afterwards. We saved those samples and also the donor samples to compare them. Using a liver function test, we found that 30 percent of patients who had open heart surgery at NIH prior to 1970 developed liver abnormalities indicative of hepatitis. That’s 1 in 3 people.

We then looked for the reasons. We found the main one was our source of blood. We were buying blood, which was then in short supply, from commercial laboratories. It turned out that their paid donors were engaging in high-risk behaviors [Note: like IV drug users sharing hypodermic needles]. We immediately stopped using these laboratories, and, through various other measures, we got the rate down to around 4 percent in 1987.

That’s when Michael Houghton, then at Chiron Corp. and a co-recipient of this year’s prize, cloned the virus. Think about it, he and his colleagues looked at 6 million clones and found just one that reacted with the convalescent serum of a patient with non-A, non-B. In other words, having contracted the virus, the patient already made antibodies against it that were present in the serum. If that one clone came from the virus, the antibodies in the serum would recognize it. They did, and Chiron then developed an assay to detect antibodies to the virus.

Collins: And that’s when they contacted you.

Alter: Yes, they wanted to use our panel of patient blood samples that had fooled a lot of people who claimed to have developed a non-A, non-B assay. Nobody else had “broken” this panel, but the Chiron Corp. did. We found that every case of non-A, non-B was really hepatitis C, the agent that they had cloned. Hepatitis C was the missing piece. As far as we could tell, there were no other agents beside hepatitis B and C that would result in transfusion transmission of the disease.

Collins: This story is clearly one of persistence. So, say something about persistence as an important characteristic of a scientist. You’re a great example of someone who was always looking out for opportunities that might not have seemed so promising at first.

Alter: I first learned persistence from Dr. Baruch Blumberg, my first NIH mentor who discovered the hepatitis B virus in 1967. [Note: Other NIH researchers identified the hepatitis A virus in 1977] The discovery started when we found this “Australian antigen,” a molecular structure that the immune system recognizes as foreign and attacks. It was a serendipitous finding that could have been easily just dropped. But he just kept at it, kept at it, kept at it. He had this famous wall where he diagrammed his hypotheses with all the contingencies if one worked or failed. Then, all of a sudden, the antigen was associated with hepatitis B. It became the basis of the hepatitis B vaccine, which is highly effective and used throughout the world. Dr. Blumberg won the Nobel Prize for his work on the hepatitis B virus in 1976.

Collins: Sometimes people look at NIH and ask why we don’t focus all of our efforts on curing a particular disease. I keep answering, ‘Wait a moment, we don’t know enough to know how to do that.’ What’s the balance that we ought to be seeking between basic research and clinical applications?

Alter: There is this tendency now to pursue highly directed research to solve a problem. That’s certainly how biopharma works. They want a payoff. The NIH is different. It’s a place where you can pursue your scientific interests, wherever they lead. The NIH leadership understands that the details of a problem often aren’t obvious at first. Researchers need to be allowed to observe things and then to pursue their leads as far as possible, with the understanding that not everything will work out. I think it’s very important to keep this basic research component in parallel with the more clinical applications. In the case of hepatitis C, it started as a clinical problem that led to a basic research investigation, which led back to a clinical problem. It was bedside-to-bench-to-bedside.

Collins: Are people still getting infected with hepatitis C?

Alter: Yes, hepatitis C remains a global problem. Seventy million people have contracted the virus, though the majority are generally asymptomatic, meaning they don’t get sick from it. Instead, they carry around the virus for decades without knowing it. That’s because the hepatitis C virus likes to persist, and our immune system doesn’t seem to be able to get rid of it easily.

However, some of those infected will have bad outcomes, such as cirrhosis or cancer of the liver. But there’s no way of knowing who will and who won’t get sick over time. The trick now is to identify people when they’re asymptomatic and without obvious disease.

That involves testing. We’re in a unique position with hepatitis C, where we have great tests that are highly sensitive and very specific to the virus. We also have great treatments. We can cure everybody who is tested and found to be positive.

Collins: People may be surprised to hear that. Here is a chronic viral illness, for which we actually have a cure. That’s come along fairly recently. Say a bit more about that—it’s such a great story of success.

Alter: For many years, the only treatment for hepatitis C was interferon, a very difficult treatment that initially had only about a 6 percent cure rate. With further progress, it got up to around 50 percent. But the big breakthrough came in the late 1990s when Gilead Corp., having the sequenced genome of the hepatitis C virus, deduced what it needs to replicate. If we know what it needs and we interfere with that, we can stop the replication. Gilead came out with a blockbuster drug that, now in combination with another drug, aims at two different sites on the virus and cures at least 98 percent of people. It’s an oral therapy taken for only 12 weeks, sometimes as little as 8 weeks, and with virtually no side-effects. It’s like a miracle drug.

Collins: What would you say to somebody who is thinking about becoming a scientist? How do you pick an area of research that will be right for you?

Alter: It’s a tough question. Medical research is very difficult, but there’s nothing more rewarding than doing something for patients and to see a good outcome like we had with hepatitis C.

The best path forward is to work for somebody who’s already an established investigator and a good teacher. Work in his or her lab for a few years and get involved in a project. I’ve learned not get into a lot of projects. Get into something where you can become the expert and pursue it.
The other thing is to collaborate. There’s no way that one person can do everything these days. You need too much technology and lots of different areas of expertise.

Collins: You took on a high-risk project in which you didn’t know that you’d find the answer. What’s the right balance between a project that you know will be productive, and something that might be risky, but, boy, if it works, could be transformative? How did you decide which of those paths to go?

Alter: I don’t think I decided. I just went! But there were interim rewards. Finding that the paid donors were bad was a reward and it had a big impact. And the different donor testing, decreasing the amount of blood [transfused], there were all kinds of steps along the way that gave you a reward. Now, did I think that there would be a treatment, an eradication of post-transfusion hepatitis at the end of my line? No, I didn’t.

And it wouldn’t have happened if it was only me. I just got the ball rolling. But it needed Houghton’s group. It needed the technology of Charlie Rice, a co-recipient of this year’s Nobel Prize. It needed joint company involvement. So, it required massive cooperation, and I have to say that here at NIH, Bob Purcell did most of the really basic work in his lab. Patrizia Farci, my closest collaborator, does things that I can’t do. You just need people who have a different expertise.

Collins: Harvey, it’s been maybe six hours since you found out that you won the Nobel Prize. How are you going to spend the rest of your day?

Alter: Well, I have to tell you a story that just happened. We had a press conference earlier today at NIH. Afterwards, I wanted to return to my NIH office and the easiest route was through the parking garage across the street from where we held the press conference. When I entered the garage, a security guard said, “You can’t come in, you haven’t been screened for COVID.” I assured him that I had been screened when I drove onto the NIH campus. He repeated that I had to go around to the front of the building to get screened.

Finally, I said to him, “Would it make any difference if I told you that I won the Nobel Prize today?” He replied, ‘That’s nice, but you must go around to the front of the building.’” So, winning the Nobel doesn’t give you immediate rewards!

Collins: Let me find that security guard and give him a bonus for doing a good job. Well, Harvey, will there be that trip to Stockholm coming up in December?

Alter: Not this year. I’ve heard that they will invite us to Stockholm next year to receive the award. But there’s going to be something in the US. I don’t know what it will be. I’ll invite you.

Collins: I will be glad to take part in the celebration. Well, Harvey, I really want to thank you for taking some time on this special day to reflect on your career and how the Nobel Committee came calling at 4:30 this morning. We’re really proud of you!

Alter: Thank you.


Hepatitis C (National Institute of Diabetes and Digestive and Kidney Diseases/NIH)

The Nobel Assembly at Karolinska Institutet has today decided to award the 2020 Nobel Prize in Physiology or Medicine jointly to Harvey J. Alter, Michael Houghton and Charles M. Rice for the discovery of Hepatitis C virus,” Nobel Prize announcement, October 5,2020.

Harvey Alter (Clinical Center/NIH)

The Road Not Taken, or How I Learned to Love the Liver: A Personal Perspective on Hepatitis History” Alter HJ, Hepatology. 2014 Jan;59(1):4-12.

Reflections on the History of HCV: A Posthumous Examination.” Alter HJ, Farci P, Bukh J, Purcell RH. Clinical Liver Disease, 15:1, Feb 2020.

Is Elimination of Hepatitis B and C a Pipe Dream or Reality?” Alter HJ, Chisari FV. Gastroenterology. 2019 Jan;156(2):294-296.

Michael Houghton (University of Alberta, Edmonton)

Charles Rice (The Rockefeller University, New York)

What is genome editing? (National Human Genome Research Institute/NIH)

Jennifer Doudna (University of California, Berkeley)

Emmanuelle Charpentier (Max Planck Institute for Infection Biology, Berlin, Germany)

Months After Recovery, COVID-19 Survivors Often Have Persistent Lung Trouble

Posted on by

Lung function test
Caption: Testing breathing capacity with a spirometer. Credit: iStock/Koldunov

The pandemic has already claimed far too many lives in the United States and around the world. Fortunately, as doctors have gained more experience in treating coronavirus disease 2019 (COVID-19), more people who’ve been hospitalized eventually will recover. This raises an important question: what does recovery look like for them?

Because COVID-19 is still a new condition, there aren’t a lot of data out there yet to answer that question. But a recent study of 55 people recovering from COVID-19 in China offers some early insight into the recovery of lung function [1]. The results make clear that—even in those with a mild-to-moderate infection—the effects of COVID-19 can persist in the lungs for months. In fact, three months after leaving the hospital about 70 percent of those in the study continued to have abnormal lung scans, an indication that the lungs are still damaged and trying to heal.

The findings in EClinicalMedicine come from a team in Henan Province, China, led by Aiguo Xu, The First Affiliated Hospital of Zhengzhou University; Yanfeng Gao, Zhengzhou University; and Hong Luo, Guangshan People’s Hospital. They’d heard about reports of lung abnormalities in patients discharged from the hospital. But it wasn’t clear how long those problems stuck around.

To find out, the researchers enrolled 55 men and women who’d been admitted to the hospital with COVID-19 three months earlier. Some of the participants, whose average age was 48, had other health conditions, such as diabetes or heart disease. But none had any pre-existing lung problems.

Most of the patients had mild or moderate respiratory illness while hospitalized. Only four of the 55 had been classified as severely ill. Fourteen patients required supplemental oxygen while in the hospital, but none needed mechanical ventilation.

Three months after discharge from the hospital, all of the patients were able to return to work. But they continued to have lingering symptoms of COVID-19, including shortness of breath, cough, gastrointestinal problems, headache, or fatigue.

Evidence of this continued trouble also showed up in their lungs. Thirty-nine of the study’s participants had an abnormal result in their computed tomography (CT) lung scan, which creates cross-sectional images of the lungs. Fourteen individuals (1 in 4) also showed reduced lung function in breathing tests.

Interestingly, the researchers found that those who went on to have more lasting lung problems also had elevated levels of D-dimer, a protein fragment that arises when a blood clot dissolves. They suggest that a D-dimer test might help to identify those with COVID-19 who would benefit from pulmonary rehabilitation to rebuild their lung function, even in the absence of severe respiratory symptoms.

This finding also points to the way in which the SARS-CoV-2 virus seems to enhance a tendency toward blood clotting—a problem addressed in our Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) public-private partnership. The partnership recently initiated a trial of blood thinners. That trial will start out by focusing on newly diagnosed outpatients and hospitalized patients, but will go on to include a component related to convalescence.

Moving forward, it will be important to conduct larger and longer-term studies of COVID-19 recovery in people of diverse backgrounds to continue to learn more about what it means to survive COVID-19. The new findings certainly indicate that for many people who’ve been hospitalized with COVID-19, regaining normal lung function may take a while. As we learn even more about the underlying causes and long-term consequences of this new infectious disease, let’s hope it will soon lead to insights that will help many more COVID-19 long-haulers and their concerned loved ones breathe easier.


[1] Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. Zhao YM, Shang YM, Song WB, Li QQ, Xie H, Xu QF, Jia JL, Li LM, Mao HL, Zhou XM, Luo H, Gao YF, Xu AG. EClinicalMedicine.2020 Aug 25:100463


Coronavirus (COVID-19) (NIH)

How the Lungs Work (National Heart, Lung, and Blood Institute/NIH)

Computed Tomography (CT) (National Institute of Biomedical Imaging and Bioengineering/NIH)

Zhengzhou University (Zhengzhou City, Henan Province, China)

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) (NIH)

Building a Better Bacterial Trap for Sepsis

Posted on by

Credit: Kandace Gollomp, MD, The Children’s Hospital of Philadelphia, PA

Spiders spin webs to catch insects for dinner. It turns out certain human immune cells, called neutrophils, do something similar to trap bacteria in people who develop sepsis, an uncontrolled, systemic infection that poses a major challenge in hospitals.

When activated to catch sepsis-causing bacteria or other pathogens, neutrophils rupture and spew sticky, spider-like webs made of DNA and antibacterial proteins. Here in red you see one of these so-called neutrophil extracellular traps (NETs) that’s ensnared Staphylococcus aureus (green), a type of bacteria known for causing a range of illnesses from skin infections to pneumonia.

Yet this image, which comes from Kandace Gollomp and Mortimer Poncz at The Children’s Hospital of Philadelphia, is much more than a fascinating picture. It demonstrates a potentially promising new way to treat sepsis.

The researchers’ strategy involves adding a protein called platelet factor 4 (PF4), which is released by clot-forming blood platelets, to the NETs. PF4 readily binds to NETs and enhances their capture of bacteria. A modified antibody (white), which is a little hard to see, coats the PF4-bound NET above. This antibody makes the NETs even better at catching and holding onto bacteria. Other immune cells then come in to engulf and clean up the mess.

Until recently, most discussions about NETs assumed they were causing trouble, and therefore revolved around how to prevent or get rid of them while treating sepsis. But such strategies faced a major obstacle. By the time most people are diagnosed with sepsis, large swaths of these NETs have already been spun. In fact, destroying them might do more harm than good by releasing entrapped bacteria and other toxins into the bloodstream.

In a recent study published in the journal Blood, Gollomp’s team proposed flipping the script [1]. Rather than prevent or destroy NETs, why not modify them to work even better to fight sepsis? Their idea: Make NETs even stickier to catch more bacteria. This would lower the number of bacteria and help people recover from sepsis.

Gollomp recalled something lab member Anna Kowalska had noted earlier in unrelated mouse studies. She’d observed that high levels of PF4 were protective in mice with sepsis. Gollomp and her colleagues wondered if the PF4 might also be used to reinforce NETs. Sure enough, Gollomp’s studies showed that PF4 will bind to NETs, causing them to condense and resist break down.

Subsequent studies in mice and with human NETs cast in a synthetic blood vessel suggest that this approach might work. Treatment with PF4 greatly increased the number of bacteria captured by NETs. It also kept NETs intact and holding tightly onto their toxic contents. As a result, mice with sepsis fared better.

Of course, mice are not humans. More study is needed to see if the same strategy can help people with sepsis. For example, it will be important to determine if modified NETs are difficult for the human body to clear. Also, Gollomp thinks this approach might be explored for treating other types of bacterial infections.

Still, the group’s initial findings come as encouraging news for hospital staff and administrators. If all goes well, a future treatment based on this intriguing strategy may one day help to reduce the 270,000 sepsis-related deaths in the U.S. and its estimated more than $24 billion annual price tag for our nation’s hospitals [2, 3].


[1] Fc-modified HIT-like monoclonal antibody as a novel treatment for sepsis. Gollomp K, Sarkar A, Harikumar S, Seeholzer SH, Arepally GM, Hudock K, Rauova L, Kowalska MA, Poncz M. Blood. 2020 Mar 5;135(10):743-754.

[2] Sepsis, Data & Reports, Centers for Disease Control and Prevention, Feb. 14, 2020.

[3] National inpatient hospital costs: The most expensive conditions by payer, 2013: Statistical Brief #204. Torio CM, Moore BJ. Healthcare Cost and Utilization Project (HCUP) Statistical Briefs. Agency for Healthcare Research and Quality (US); 2016 May.


Sepsis (National Institute of General Medical Sciences/NIH)

Kandace Gollomp (The Children’s Hospital of Philadelphia, PA)

Mortimer Poncz (The Children’s Hospital of Philadelphia, PA)

NIH Support: National Heart, Lung, and Blood Institute

Next Page