Skip to main content

breast cancer

Putting Bone Metastasis in the Spotlight

Posted on by

When cancers spread, or metastasize, from one part of the body to another, bone is a frequent and potentially devastating destination. Now, as you can see in this video, an NIH-funded research team has developed a new system that hopefully will provide us with a better understanding of what goes on when cancer cells invade bone.

In this 3D cross-section, you see the nuclei (green) and cytoplasm (red) of human prostate cancer cells growing inside a bioengineered construct of mouse bone (blue-green) that’s been placed in a mouse. The new system features an imaging window positioned next to the new bone, which enabled the researchers to produce the first series of direct, real-time micrographs of cancer cells eroding the interior of bone.


3D Action Film Stars Cancer Cell as the Villain

Posted on by

For centuries, microscopes have brought to light the otherwise invisible world of the cell. But microscopes don’t typically visualize the dynamic world of the cell within a living system.

For various technical reasons, researchers have typically had to displace cells, fix them in position, mount them onto slides, and look through a microscope’s viewfinder to see the cells. It can be a little like trying to study life in the ocean by observing a fish cooped up in an 8-gallon tank.

Now, a team partially funded by NIH has developed a new hybrid imaging technology to produce amazing, live-action 3D movies of living cells in their more natural state. In this video, you’re looking at a human breast cancer cell (green) making its way through a blood vessel (purple) of a young zebrafish.

At first, the cancer cell rolls along rather freely. As the cell adheres more tightly to the blood vessel wall, that rolling motion slows to a crawl. Ultimately, the cancer cell finds a place to begin making its way across and through the blood vessel wall, where it can invade other tissues.


A Scientist Whose Music Gives Comfort

Posted on by

Over the past few years, my blog has highlighted a wide range of Creative Minds from across biomedical research. But creative minds come in many forms, and, for a change of pace, I’d like to kick back this August and highlight some talented scientists who are also doing amazing things in the arts, from abstract painting to salsa dancing to rock’n’roll.

My first post introduces you to Dr. Pardis Sabeti, a computational geneticist at the Broad Institute of Harvard and Massachusetts Institute of Technology (MIT), Cambridge, and one of Time Magazine’s 2014 People of the Year for her work to contain the last major Ebola outbreak in West Africa. When she’s not in the lab studying viruses, Sabeti is the hard-driving voice of the indie rock band Thousand Days that has been rocking Boston for more than a decade.


Most Women with Early-Stage Breast Cancer Don’t Need Chemo

Posted on by

Women discussing cancer treatment options

Credit: National Cancer Institute, NIH

In the last few days, you may have heard that there’s been a significant development in the management of breast cancer. So here’s the NIH Director’s blog description of what’s happened. Each year, as many as 135,000 American women who’ve undergone surgery for the most common form of early-stage breast cancer face a difficult decision: whether or not to undergo chemotherapy. Genetic testing of tumor tissue has helped to inform some of these decisions, with women whose tumors score high on the breast cancer recurrence scale likely to benefit from chemo, and those with low-scoring tumors able to skip the cost and potentially serious side effects. But there’s been a catch: most tumors score somewhere in the middle, leaving women and their doctors uncertain about what to do.

Now, thanks to the long-awaited results of a large, NIH-funded clinical trial, we finally have an answer. About 70 percent of women with hormone receptor (HR)-positive, HER2-negative, axillary lymph node-negative breast cancer—including those with mid-range scores on the cancer recurrence scale—do not benefit from chemotherapy [1]. These findings promise to spare a great many women with breast cancer from unnecessary exposure to costly and potentially toxic chemotherapy.


New ‘Liquid Biopsy’ Shows Early Promise in Detecting Cancer

Posted on by

Liquid Biopsy Schematic

Caption: Liquid biopsy. Tumor cells shed protein and DNA into bloodstream for laboratory analysis and early cancer detection.

Early detection usually offers the best chance to beat cancer. Unfortunately, many tumors aren’t caught until they’ve grown relatively large and spread to other parts of the body. That’s why researchers have worked so tirelessly to develop new and more effective ways of screening for cancer as early as possible. One innovative approach, called “liquid biopsy,” screens for specific molecules that tumors release into the bloodstream.

Recently, an NIH-funded research team reported some encouraging results using a “universal” liquid biopsy called CancerSEEK [1]. By analyzing samples of a person’s blood for eight proteins and segments of 16 genes, CancerSEEK was able to detect most cases of eight different kinds of cancer, including some highly lethal forms—such as pancreatic, ovarian, and liver—that currently lack screening tests.

In a study of 1,005 people known to have one of eight early-stage tumor types, CancerSEEK detected the cancer in blood about 70 percent of the time, which is among the best performances to date for a blood test. Importantly, when CancerSEEK was performed on 812 healthy people without cancer, the test rarely delivered a false-positive result. The test can also be run relatively cheaply, at an estimated cost of less than $500.


Next Page