Tumor Scanner Promises Fast 3D Imaging of Biopsies

UW light sheet microscope team

Caption: University of Washington team that developed new light-sheet microscope (center) includes (l-r) Jonathan Liu, Adam Glaser, Larry True, Nicholas Reder, and Ye Chen.
Credit: Mark Stone/University of Washington

After surgically removing a tumor from a cancer patient, doctors like to send off some of the tissue for evaluation by a pathologist to get a better idea of whether the margins are cancer free and to guide further treatment decisions. But for technical reasons, completing the pathology report can take days, much to the frustration of patients and their families. Sometimes the results even require an additional surgical procedure.

Now, NIH-funded researchers have developed a groundbreaking new microscope to help perform the pathology in minutes, not days. How’s that possible? The device works like a scanner for tissues, using a thin sheet of light to capture a series of thin cross sections within a tumor specimen without having to section it with a knife, as is done with conventional pathology. The rapidly acquired 2D “optical sections” are processed by a computer that assembles them into a high-resolution 3D image for immediate analysis.

Continue reading

Snapshots of Life: Finding a Cube for Cancer

 

Targeted drug delivery systems for cancer treatment

Jenolyn F. Alexander and Biana Godin, Houston Methodist Research Institute; Veronika Kozlovskaya and Eugenia Kharlampieva, University of Alabama at Birmingham.

Creative photographers have long experimented with superimposing images, one over the other, to produce striking visual effects. Now a group of NIH-supported scientists at Houston Methodist Research Institute and their colleagues have done the same thing to highlight their work in the emerging field of cancer nanomedicine, using microscopic materials to deliver cancer treatments with potentially greater precision. In the process, the researchers generated a photographic work of art that was a winner in the Federation of American Societies for Experimental Biology 2015 Bioart competition.

The gold cubes are man-made polymer microcarriers, just 2 micrometers wide (by comparison, human cells generally range in diameter from 7 to 20 micrometers), designed to transport chemotherapy drugs directly to tumor cells. These experimental cubes, enlarged in the upper left part of the photo with a scanning electron microscope for better viewing, have been superimposed onto a second photograph snapped with a confocal fluorescence microscope. It shows similar cube-shaped microcarriers (yellow) inside cultured breast cancer cells (nucleus is purple, cytoplasm is turquoise).

Continue reading

Cool Videos: Spying on Cancer Cell Invasion

Spying on Cancer Cell Invation

If you’re a fan of the Mission: Impossible spy thrillers, you might think that secret agent Ethan Hunt has done it all. But here’s a potentially life-saving mission that his force has yet to undertake: spying on cancer cells. Never fear—some scientific sleuths already have!

So, have a look at this bio-action flick recently featured in the American Society for Cell Biology’s 2015 Celldance video series. Without giving too much of the plot away, let me just say that it involves cancer cells escaping from a breast tumor and spreading, or metastasizing, to other parts of the body. Along the way, those dastardly cancer cells take advantage of collagen fibers to make a tight-rope getaway and recruit key immune cells, called macrophages, to serve as double agents to aid and abet their diabolical spread.

Continue reading

Cancer Metastasis: Trying to Catch the Culprits Earlier

Scaffold

Caption: Scaffold of a cancer cell-attracting implant as seen by scanning electron microscopy.
Credit: Laboratory of Lonnie Shea

For many people diagnosed with cancer localized to the breast, prostate, or another organ, the outlook after treatment is really quite good. Still, most require follow-up testing because there remains a risk of the cancer recurring, particularly in the first five years after a tumor is removed. Catching recurrence at an early, treatable stage can be difficult because even a small number of new or “leftover” tumor cells have the ability to enter the bloodstream or lymphatics and silently spread from the original tumor site and into the lung, brain, liver, and other vital organs—the dangerous process of metastasis. What if there was a way to sound the alarm much earlier—to detect tumor cells just as they are starting to spread?

Reporting in Nature Communications [1], an NIH-funded research team from the University of Michigan, Ann Arbor, and Northwestern University, Evanston, IL, has developed an experimental device that appears to fit the bill. When these tiny, biodegradable scaffolds were implanted in mice with a highly metastatic form of breast cancer, the devices attracted and captured migrating cancer cells, making rapid detection possible via a special imaging system. If the results are reproduced in additional tests in animals and humans, such devices might enable earlier identification—and thereby treatment—of one of the biggest challenges in oncology today: metastatic cancer.

Continue reading

LabTV: Curious About Cancer Patients’ Quality of Life

Katie MartinezKatie Martinez struggled mightily with math in high school, but now she’s eagerly pursuing a biomedical research career that’s all about crunching numbers. So, what happened to Katie? Cancer is what happened, specifically being diagnosed with breast cancer when she was just a few years out of college.

While growing up in Alexandria, VA, Martinez had little interest in science or math, doing so poorly that she even had to enroll in some remedial classes. So, it wasn’t surprising that she chose to major in history when she went off to Carnegie Mellon University in Pittsburgh. There, Martinez eventually became intrigued by the many ways in which “built environments”—the places and circumstances in which people live—can affect the health of both individuals and communities. Her interest in these social determinants of health led her to pursue a Master’s degree in Public Health at the University of California, Los Angeles.

Continue reading