Skip to main content

peripheral neuropathy

Skin Cells Can Be Reprogrammed In Vivo

Posted on by Dr. Francis Collins

Daniel Gallego-Perez
Credit: The Ohio State University College of Medicine, Columbus

Thousands of Americans are rushed to the hospital each day with traumatic injuries. Daniel Gallego-Perez hopes that small chips similar to the one that he’s touching with a metal stylus in this photo will one day be a part of their recovery process.

The chip, about one square centimeter in size, includes an array of tiny channels with the potential to regenerate damaged tissue in people. Gallego-Perez, a researcher at The Ohio State University Colleges of Medicine and Engineering, Columbus, has received a 2018 NIH Director’s New Innovator Award to develop the chip to reprogram skin and other cells to become other types of tissue needed for healing. The reprogrammed cells then could regenerate and restore injured neural or vascular tissue right where it’s needed.

Gallego-Perez and his Ohio State colleagues wondered if it was possible to engineer a device placed on the skin that’s capable of delivering reprogramming factors directly into cells, eliminating the need for the viral delivery vectors now used in such work. While such a goal might sound futuristic, Gallego-Perez and colleagues offered proof-of-principle last year in Nature Nanotechnology that such a chip can reprogram skin cells in mice. [1]

Here’s how it works: First, the chip’s channels are loaded with specific reprogramming factors, including DNA or proteins, and then the chip is placed on the skin. A small electrical current zaps the chip’s channels, driving reprogramming factors through cell membranes and into cells. The process, called tissue nanotransfection (TNT), is finished in milliseconds.

To see if the chips could help heal injuries, researchers used them to reprogram skin cells into vascular cells in mice. Not only did the technology regenerate blood vessels and restore blood flow to injured legs, the animals regained use of those limbs within two weeks of treatment.

The researchers then went on to show that they could use the chips to reprogram mouse skin cells into neural tissue. When proteins secreted by those reprogrammed skin cells were injected into mice with brain injuries, it helped them recover.

In the newly funded work, Gallego-Perez wants to take the approach one step further. His team will use the chip to reprogram harder-to-reach tissues within the body, including peripheral nerves and the brain. The hope is that the device will reprogram cells surrounding an injury, even including scar tissue, and “repurpose” them to encourage nerve repair and regeneration. Such an approach may help people who’ve suffered a stroke or traumatic nerve injury.

If all goes well, this TNT method could one day fill an important niche in emergency medicine. Gallego-Perez’s work is also a fine example of just one of the many amazing ideas now being pursued in the emerging field of regenerative medicine.

Reference:

[1] Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Gallego-Perez D, Pal D, Ghatak S, Malkoc V, Higuita-Castro N, Gnyawali S, Chang L, Liao WC, Shi J, Sinha M, Singh K, Steen E, Sunyecz A, Stewart R, Moore J, Ziebro T, Northcutt RG, Homsy M, Bertani P, Lu W, Roy S, Khanna S, Rink C, Sundaresan VB, Otero JJ, Lee LJ, Sen CK. Nat Nanotechnol. 2017 Oct;12(10):974-979.

Links:

Stroke Information (National Institute of Neurological Disorders and Stroke/NIH)

Burns and Traumatic Injury (NIH)

Peripheral Neuropathy (National Institute of Neurological Disorders and Stroke/NIH)

Video: Breakthrough Device Heals Organs with a Single Touch (YouTube)

Gallego-Perez Lab (The Ohio State University College of Medicine, Columbus)

Gallego-Perez Project Information (NIH RePORTER)

NIH Support: Common Fund; National Institute of Neurological Disorders and Stroke


Cool Videos: Regenerating Nerve Fibers

Posted on by Dr. Francis Collins

If you enjoy action movies, you can probably think of a superhero—maybe Wolverine?—who can lose a limb in battle, yet grow it right back and keep on going. But could regenerating a lost limb ever happen in real life? Some scientists are working hard to understand how other organisms do this.

As shown in this video of a regenerating fish fin, biology can sometimes be stranger than fiction. The zebrafish (Danio rerio), which is a species of tropical freshwater fish that’s an increasingly popular model organism for biological research, is among the few vertebrates that can regrow body parts after they’ve been badly damaged or even lost. Using time-lapse photography over a period of about 12 hours, NIH grantee Sandra Rieger, now at MDI Biological Laboratory, Bar Harbor, ME, used a fluorescent marker (green) to track a nerve fiber spreading through the skin of a zebrafish tail fin (gray). The nerve regeneration was occurring in tissue being spontaneously formed to replace a section of a young zebrafish’s tail fin that had been lopped off 3 days earlier.

Along with other tools, Rieger is using such imaging to explore how the processes of nerve regeneration and wound healing are coordinated. The researcher started out by using a laser to sever nerves in a zebrafish’s original tail fin, assuming that the nerves would regenerate—but they did not! So, she went back to the drawing board and discovered that if she also used the laser to damage some skin cells in the tail fin, the nerves regenerated. Rieger suspects the answer to the differing outcomes lies in the fact that the fish’s damaged skin cells release hydrogen peroxide, which may serve as a critical prompt for the regenerative process [1]. Rieger and colleagues went on discover that the opposite is also true: when they used a cancer chemotherapy drug to damage skin cells in a zebrafish tail fin, it contributed to the degeneration of the fin’s nerve fibers [2].

Based on these findings, Rieger wants to see whether similar processes may be going on in the hands and feet of cancer patients who struggle with painful nerve damage, called peripheral neuropathy, caused by certain chemotherapy drugs, including taxanes and platinum compounds. For some people, the pain and tingling can be so severe that doctors must postpone or even halt cancer treatment. Rieger is currently working with a collaborator to see if two protective molecules found in the zebrafish might be used to reduce or prevent chemotherapy-induced peripheral neuropathy in humans.

In recent years, a great deal of regenerative medicine has focused on learning to use stem cell technologies to make different kinds of replacement tissue. Still, as Rieger’s work demonstrates, there remains much to be gained from studying model organisms, such as the zebrafish and axolotl salamander, that possess the natural ability to regenerate limbs, tissues, and even internal organs. Now, that’s a super power we’d all like to have.

Reference:

[1] Hydrogen peroxide promotes injury-induced peripheral sensory axon regeneration in the zebrafish skin. Rieger S, Sagasti A. PLoS Biol. 2011 May;9(5):e1000621

[2] Paclitaxel-induced epithelial damage and ectopic MMP-13 expression promotes neurotoxicity in zebrafish. Lisse TS, Middleton LJ, Pellegrini AD, Martin PB, Spaulding EL, Lopes O, Brochu EA, Carter EV, Waldron A, Rieger S. Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):E2189-E2198.

Links:

Chemotherapy-Induced Peripheral Neuropathy (National Cancer Institute/NIH)

Learning About Human Biology From a Fish (National Institute of General Medical Sciences/NIH)

Sandra Rieger (MDI Biological Laboratory, Bar Harbor, ME)

NIH Support: National Institute of Dental and Craniofacial Research; National Institute of General Medical Sciences; National Institute of Neurological Disorders and Stroke