Skip to main content

Skin Cells Can Be Reprogrammed In Vivo

Posted on by Dr. Francis Collins

Daniel Gallego-Perez
Credit: The Ohio State University College of Medicine, Columbus

Thousands of Americans are rushed to the hospital each day with traumatic injuries. Daniel Gallego-Perez hopes that small chips similar to the one that he’s touching with a metal stylus in this photo will one day be a part of their recovery process.

The chip, about one square centimeter in size, includes an array of tiny channels with the potential to regenerate damaged tissue in people. Gallego-Perez, a researcher at The Ohio State University Colleges of Medicine and Engineering, Columbus, has received a 2018 NIH Director’s New Innovator Award to develop the chip to reprogram skin and other cells to become other types of tissue needed for healing. The reprogrammed cells then could regenerate and restore injured neural or vascular tissue right where it’s needed.

Gallego-Perez and his Ohio State colleagues wondered if it was possible to engineer a device placed on the skin that’s capable of delivering reprogramming factors directly into cells, eliminating the need for the viral delivery vectors now used in such work. While such a goal might sound futuristic, Gallego-Perez and colleagues offered proof-of-principle last year in Nature Nanotechnology that such a chip can reprogram skin cells in mice. [1]

Here’s how it works: First, the chip’s channels are loaded with specific reprogramming factors, including DNA or proteins, and then the chip is placed on the skin. A small electrical current zaps the chip’s channels, driving reprogramming factors through cell membranes and into cells. The process, called tissue nanotransfection (TNT), is finished in milliseconds.

To see if the chips could help heal injuries, researchers used them to reprogram skin cells into vascular cells in mice. Not only did the technology regenerate blood vessels and restore blood flow to injured legs, the animals regained use of those limbs within two weeks of treatment.

The researchers then went on to show that they could use the chips to reprogram mouse skin cells into neural tissue. When proteins secreted by those reprogrammed skin cells were injected into mice with brain injuries, it helped them recover.

In the newly funded work, Gallego-Perez wants to take the approach one step further. His team will use the chip to reprogram harder-to-reach tissues within the body, including peripheral nerves and the brain. The hope is that the device will reprogram cells surrounding an injury, even including scar tissue, and “repurpose” them to encourage nerve repair and regeneration. Such an approach may help people who’ve suffered a stroke or traumatic nerve injury.

If all goes well, this TNT method could one day fill an important niche in emergency medicine. Gallego-Perez’s work is also a fine example of just one of the many amazing ideas now being pursued in the emerging field of regenerative medicine.

Reference:

[1] Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Gallego-Perez D, Pal D, Ghatak S, Malkoc V, Higuita-Castro N, Gnyawali S, Chang L, Liao WC, Shi J, Sinha M, Singh K, Steen E, Sunyecz A, Stewart R, Moore J, Ziebro T, Northcutt RG, Homsy M, Bertani P, Lu W, Roy S, Khanna S, Rink C, Sundaresan VB, Otero JJ, Lee LJ, Sen CK. Nat Nanotechnol. 2017 Oct;12(10):974-979.

Links:

Stroke Information (National Institute of Neurological Disorders and Stroke/NIH)

Burns and Traumatic Injury (NIH)

Peripheral Neuropathy (National Institute of Neurological Disorders and Stroke/NIH)

Video: Breakthrough Device Heals Organs with a Single Touch (YouTube)

Gallego-Perez Lab (The Ohio State University College of Medicine, Columbus)

Gallego-Perez Project Information (NIH RePORTER)

NIH Support: Common Fund; National Institute of Neurological Disorders and Stroke

8 Comments

  • Craig Young says:

    Exciting news! And exciting to see what can come from innovative grants – congratulations to all.

  • cassidy says:

    incredible leaps in medical science.

  • Amirah Calloway says:

    When do we start helping people, and what are we waiting for??. This knowledge was given to man by the creator to help disabled people. Where do I sign up. I can’t afford to go to India where they have already started healing people.

  • audreysanfilippo says:

    yes when is this going to be available in these, 10 years I hope not, as it has shown safety and efficacy. where and when will this be available in the usa?

  • Lorraine says:

    Is there any imminent promise of this therapy being used for CADASIL patients?

  • Mike Brown says:

    Is anyone conducting research on TNT in any of the southeastern universities or medical facilities?

  • ATHAR A says:

    Following TNT news from last few years. I am so glad this miracle genius invention of cure will save the world !

  • My aunt recently received a diagnosis of neuropathy, which is making walking very painful and uncomfortable for her. It’s heartbreaking to witness, but she’s searching for the top neuropathy therapy to control the pain and reclaim some of her mobility. I sincerely hope I can assist her in leading an active and pleasant life once more. She may, in my opinion, also gain from your explanation of how the chip, which is around one square centimeter in size and has a variety of microscopic channels, has the ability to repair damaged human tissue.

Leave a Comment

Discover more from NIH Director's Blog

Subscribe now to keep reading and get access to the full archive.

Continue reading