Skip to main content

ACTIV

Discussing the Need for Reliable Antibody Testing for COVID-19

Posted on by

At Home with Ned Sharpless

There’s been a great deal of discussion about whether people who recover from coronavirus disease 2019 (COVID-19), have neutralizing antibodies in their bloodstream to guard against another infection. Lots of interesting data continue to emerge, including a recent preprint from researchers at Sherman Abrams Laboratory, Brooklyn, NY [1]. They tested 11,092 people for antibodies in May at a local urgent care facility and found nearly half had long-lasting IgG antibodies, a sign of exposure to the novel coronavirus SARS-CoV-2, the cause of COVID-19. The researchers also found a direct correlation between the severity of a person’s symptoms and their levels of IgG antibodies.

This study and others remind us of just how essential antibody tests will be going forward to learn more about this challenging pandemic. These assays must have high sensitivity and specificity, meaning there would be few false negatives and false positives, to tell us more about a person’s exposure to SARS-CoV-2. While there are some good tests out there, not all are equally reliable.

Recently, I had a chance to discuss COVID-19 antibody tests, also called serology tests, with Dr. Norman “Ned” Sharpless, Director of NIH’s National Cancer Institute (NCI). Among his many talents, Dr. Sharpless is an expert on antibody testing for COVID-19. You might wonder how NCI got involved in COVID-19 testing. Well, you’re going to find out. Our conversation took place while videoconferencing, with him connecting from North Carolina and me linking in from my home in Maryland. Here’s a condensed transcript of our chat:

Collins: Ned, thanks for joining me. Maybe we should start with the basics. What are antibodies anyway?

Sharpless: Antibodies are proteins that your body makes as part of the learned immune system. It’s the immunity that responds to a bacterium or a virus. In general, if you draw someone’s blood after an infection and test it for the presence of these antibodies, you can often know whether they’ve been infected. Antibodies can hang around for quite a while. How long exactly is a topic of great interest, especially in terms of the COVID-19 pandemic. But we think most people infected with coronavirus will make antibodies at a reasonably high level, or titer, in their peripheral blood within a couple of weeks of the infection.

Collins: What do antibodies tell us about exposure to a virus?

Sharpless: A lot of people with coronavirus are infected without ever knowing it. You can use these antibody assays to try and tell how many people in an area have been infected, that is, you can do a so-called seroprevalence survey.

You could also potentially use these antibody assays to predict someone’s resistance to future infection. If you cleared the infection and established immunity to it, you might be resistant to future infection. That might be very useful information. Maybe you could make a decision about how to go out in the community. So, that part is of intense interest as well, although less scientifically sound at the moment.

Collins: I have a 3D-printed model of SARS-CoV-2 on my desk. It’s sort of a spherical virus that has spike proteins on its surface. Do the antibodies interact with the virus in some specific ways?

Sharpless: Yes, antibodies are shaped like the letter Y. They have two binding domains at the head of each Y that will recognize something about the virus. We find antibodies in the peripheral blood that recognize either the virus nucleocapsid, which is the structural protein on the inside; or the spikes, which stick out and give coronavirus its name. We know now that about 99 percent of people who get infected with the virus will develop antibodies eventually. Most of those antibodies that you can detect to the spike proteins will be neutralizing, which means they can kill the virus in a laboratory experiment. We know from other viruses that, generally, having neutralizing antibodies is a promising sign if you want to be immune to that virus in the future.

Collins: Are COVID-19 antibodies protective? Are there reports of people who’ve gotten better, but then were re-exposed and got sick again?

Sharpless: It’s controversial. People can shed the virus’s nucleic acid [genetic material], for weeks or even more than a month after they get better. So, if they have another nucleic acid test it could be positive, even though they feel better. Often, those people aren’t making a lot of live virus, so it may be that they never stopped shedding the virus. Or it may be that they got re-infected. It’s hard to understand what that means exactly. If you think about how many people worldwide have had COVID-19, the number of legitimate possible reinfection cases is in the order of a handful. So, it’s a pretty rare event, if it happens at all.

Collins: For somebody who does have the antibodies, who apparently was previously infected, do they need to stop worrying about getting exposed? Can they can do whatever they want and stop worrying about distancing and wearing masks?

Sharpless: No, not yet. To use antibodies to predict who’s likely to be immune, you’ve got to know two things.

First: can the tests actually measure antibodies reliably? I think there are assays available to the public that are sufficiently good for asking this question, with an important caveat. If you’re trying to detect something that’s really rare in a population, then any test is going to have limitations. But if you’re trying to detect something that’s more common, as the virus was during the recent outbreak in Manhattan, I think the tests are up to the task.

Second: does the appearance of an antibody in the peripheral blood mean that you’re actually immune or you’re just less likely to get the virus? We don’t know the answer to that yet.

Collins: Let’s be optimistic, because it sounds like there’s some evidence to support the idea that people who develop these antibodies are protected against infection. It also sounds like the tests, at least some of them, are pretty good. But if there is protection, how long would you expect it to last? Is this one of those things where you’re all set for life? Or is this going to be something where somebody’s had it and might get it again two or three years from now, because the immunity faded away?

Sharpless: Since we have no direct experience with this virus over time, it’s hard to answer. The potential for this cell-based humoral immunity to last for a while is there. For some viruses, you have a long-lasting antibody protection after infection; for other viruses, not so much.

So that’s the unknown thing. Is immunity going to last for a while? Of course, if one were to bring up the topic of vaccines, that’s very important to know, because you would want to know how often one would have to give that vaccine, even under optimal circumstances.

Collins: Yes, our conversation about immunity is really relevant to the vaccines we’re trying to develop right now. Will these vaccines be protective for long periods of time? We sure hope so, but we’ve got to look carefully at the issue. Let’s come back, though, to the actual performance of the tests. The NCI has been right in the middle of trying to do this kind of validation. How did that happen, and how did that experience go?

Sharpless: Yes, I think one might ask: why is the National Cancer Institute testing antibody kits for the FDA? It is unusual, but certainly not unheard of, for NCI to take up problems like this during a time of a national emergency. During the HIV era, NCI scientists, along with others, identified the virus and did one of the first successful compound screens to find the drug AZT, one of the first effective anti-HIV therapies.

NCI’s Frederick National Lab also has a really good serology lab that had been predominantly working on human papillomavirus (HPV). When the need arose for serologic testing a few months ago, we pivoted that lab to a coronavirus serology lab. It took us a little while, but eventually we rounded up everything you needed to create positive and negative reference panels for antibody testing.

At that time, the FDA had about 200 manufacturers making serology tests that hoped for approval to sell. The FDA wanted some performance testing of those assays by a dispassionate third party. The Frederick National Lab seemed like the ideal place, and the manufacturers started sending us kits. I think we’ve probably tested on the order of 20 so far. We give those data back to the FDA for regulatory decision making. They’re putting all the data online.

Collins: How did it look? Are these all good tests or were there some clunkers?

Sharpless: There were some clunkers. But we were pleased to see that some of the tests appear to be really good, both in our hands and those of other groups, and have been used in thousands of patients.

There are a few tests that have sensitivities that are pretty high and specificities well over 99 percent. The Roche assay has a 99.8 percent specificity claimed on thousands of patients, and for the Mt. Sinai assay developed and tested by our academic collaborators in a panel of maybe 4,000 patients, they’re not sure they’ve ever had a false positive. So, there are some assays out there that are good.

Collins: There’s been talk about how there will soon be monoclonal antibodies directed against SARS-CoV-2. How are those derived?

Sharpless: They’re picked, generally, for appearing to have neutralizing activity. When a person makes antibodies, they don’t make one antibody to a pathogen. They make a whole family of them. And those can be individually isolated, so you can know which antibodies made by a convalescent individual really have virus-neutralizing capacity. That portion of the antibody that recognizes the virus can be engineered into a manufacturing platform to make monoclonal antibodies. Monoclonal means one kind of antibody. That approach has worked for other infectious diseases and is an interesting idea here too.

Collins: I can say a bit about that, because we are engaged in a partnership with industry and FDA called Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV). One of the hottest ideas right now is monoclonal antibodies, and we’re in the process of devising a master protocol, one for outpatients and one for inpatients.

Janet Woodcock of Operation Warp Speed tells me 21 companies are developing monoclonal antibodies. While doing these trials, we’d love to do comparisons, which is why it’s good to have an organization like ACTIV to bring everybody together, making sure you’re using the same endpoints and the same laboratory measures. I think that, maybe even by late summer, we might have some results. For people who are looking at what’s the next most-hopeful therapeutic option for people who are really sick with COVID-19, so far we have remdesivir. It helps, but it’s not a home run. Maybe monoclonal antibodies will be the next thing that really gives a big boost in survival. That would be the hope.

Ned, let me ask you one final question about herd, or group, immunity. One hears a bit about that in terms of how we are all going to get past this COVID-19 pandemic. What’s that all about?

Sharpless: Herd immunity is when a significant portion of the population is immune to a pathogen, then that pathogen will die out in the population. There just aren’t enough susceptible people left to infect. What the threshold is for herd immunity depends on how infectious the virus is. For a highly infectious virus, like measles, maybe up to 90 percent of the population must be immune to get herd immunity. Whereas for other less-infectious viruses, it may only be 50 percent of the population that needs to be immune to get herd immunity. It’s a theoretical thing that makes some assumptions, such as that everybody’s health status is the same and the population mixes perfectly every day. Neither of those are true.

How well that actual predictive number will work for coronavirus is unknown. The other thing that’s interesting is a lot of that work has been based on vaccines, such as what percentage do you have to vaccinate to get herd immunity? But if you get to herd immunity by having people get infected, so-called natural herd immunity, that may be different. You would imagine the most susceptible people get infected soonest, and so the heterogeneity of the population might change the threshold calculation.

The short answer is nobody wants to find out. No one wants to get to herd immunity for COVID-19 through natural herd immunity. The way you’d like to get there is with a vaccine that you then could apply to a large portion of the population, and have them acquire immunity in a more safe and controlled manner. Should we have an efficacious vaccine, this question will loom large: how many people do we need to vaccinate to really try and protect vulnerable populations?

Collins: That’s going to be a really critical question for the coming months, as the first large-scale vaccine trials get underway in July, and we start to see how they work and how successful and safe they are. But I’m also worried seeing some reports that 1 out of 5 Americans say they wouldn’t take a vaccine. It would be truly a tragedy if we have a safe and effective vaccine, but we don’t get enough uptake to achieve herd immunity. So, we’ve got some work to do on all fronts, that’s for sure.

Ned, I want to thank you for sharing all this information about antibodies and serologies and other things, as well as thank you for your hard work with all your amazing NCI colleagues.

Sharpless: Thanks for having me.

Reference:
[1] SARS-CoV-2 IgG Antibody Responses in New York City. Reifer J, Hayum N, Heszkel B, Klagsbald I, Streva VA. medRxiv. Preprint posted May 26, 2020.

Links:

Coronavirus (COVID-19) (NIH)

At NCI, A Robust and Rapid Response to the COVID-19 Pandemic. Norman E. Sharpless. Cancer Currents Blog. April 17, 2020 (National Cancer Institute/NIH)

Serological Testing for SARS-CoV-2 Antibodies (American Medical Association, Chicago)

COVID-19 Antibody Testing Primer (Infectious Diseases Society of America, Arlington, VA)

Accelerating COVID-19 Therapeutic Interventions and Vaccines (NIH)


Enlisting Monoclonal Antibodies in the Fight Against COVID-19

Posted on by

B38 Antibody and SARS-CoV-2 wtih ACE2 Receptor
Caption: Antibody Binding to SARS-CoV-2. Structural illustration of B38 antibody (cyan, green) attached to receptor-binding domain of the coronavirus SARS-CoV-2 (magenta). B38 blocks SARS-CoV-2 from binding to the ACE2 receptor (light pink) of a human cell, ACE2 is what the virus uses to infect cells. Credit: Y. Wu et a. Science, 2020

We now know that the immune system of nearly everyone who recovers from COVID-19 produces antibodies against SARS-CoV-2, the novel coronavirus that causes this easily transmitted respiratory disease [1]. The presence of such antibodies has spurred hope that people exposed to SARS-CoV-2 may be protected, at least for a time, from getting COVID-19 again. But, in this post, I want to examine another potential use of antibodies: their promise for being developed as therapeutics for people who are sick with COVID-19.

In a recent paper in the journal Science, researchers used blood drawn from a COVID-19 survivor to identify a pair of previously unknown antibodies that specifically block SARS-CoV-2 from attaching to human cells [2]. Because each antibody locks onto a slightly different place on SARS-CoV-2, the vision is to use these antibodies in combination to block the virus from entering cells, thereby curbing COVID-19’s destructive spread throughout the lungs and other parts of the body.

The research team, led by Yan Wu, Capital Medical University, Beijing, first isolated the pair of antibodies in the laboratory, starting with white blood cells from the patient. They were then able to produce many identical copies of each antibody, referred to as monoclonal antibodies. Next, these monoclonal antibodies were simultaneously infused into a mouse model that had been infected with SARS-CoV-2. Just one infusion of this combination antibody therapy lowered the amount of viral genetic material in the animals’ lungs by as much as 30 percent compared to the amount in untreated animals.

Monoclonal antibodies are currently used to treat a variety of conditions, including asthma, cancer, Crohn’s disease, and rheumatoid arthritis. One advantage of this class of therapeutics is that the timelines for their development, testing, and approval are typically shorter than those for drugs made of chemical compounds, called small molecules. Because of these and other factors, many experts think antibody-based therapies may offer one of the best near-term options for developing safe, effective treatments for COVID-19.

So, what exactly led up to this latest scientific achievement? The researchers started out with a snippet of SARS-CoV-2’s receptor binding domain (RBD), a vital part of the spike protein that protrudes from the virus’s surface and serves to dock the virus onto an ACE2 receptor on a human cell. In laboratory experiments, the researchers used the RBD snippet as “bait” to attract antibody-producing B cells in a blood sample obtained from the COVID-19 survivor. Altogether, the researchers identified four unique antibodies, but two, which they called B38 and H4, displayed a synergistic action in binding to the RBD that made them stand out for purposes of therapeutic development and further testing.

To complement their lab and animal experiments, the researchers used a particle accelerator called a synchrotron to map, at near-atomic resolution, the way in which the B38 antibody locks onto its viral target. This structural information helps to clarify the precise biochemistry of the complex interaction between SARS-CoV-2 and the antibody, providing a much-needed guide for the rational design of targeted drugs and vaccines. While more research is needed before this or other monoclonal antibody therapies can be used in humans suffering from COVID-19, the new work represents yet another example of how basic science is expanding fundamental knowledge to advance therapeutic discovery for a wide range of health concerns.

Meanwhile, there’s been other impressive recent progress towards the development of monoclonal antibody therapies for COVID-19. In work described in the journal Nature, an international research team started with a set of neutralizing antibodies previously identified in a blood sample from a person who’d recovered from a different coronavirus-caused disease, called severe acute respiratory syndrome (SARS), in 2003 [3]. Through laboratory and structural imaging studies, the researchers found that one of these antibodies, called S309, proved particularly effective at neutralizing the coronavirus that causes COVID-19, SARS-CoV-2, because of its potent ability to target the spike protein that enables the virus to enter cells. The team, which includes NIH grantees David Veesler, University of Washington, Seattle, and Davide Corti, Humabs Biomed, a subsidiary of Vir Biotechnology, has indicated that S309 is already on an accelerated development path toward clinical trials.

In the U.S. and Europe, the Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) partnership, which has brought together public and private sector COVID-19 therapeutic and vaccine efforts, is intensely pursuing the development and testing of therapeutic monoclonal antibodies for COVID-19 [4]. Stay tuned for more information about these potentially significant advances in the next few months.

References:

[1] Humoral immune response and prolonged PCR positivity in a cohort of 1343 SARS-CoV 2 patients in the New York City region. Wajnberg A , Mansour M, Leven E, Bouvier NM, Patel G, Firpo A, Mendu R, Jhang J, Arinsburg S, Gitman M, Houldsworth J, Baine I, Simon V, Aberg J, Krammer F, Reich D, Cordon-Cardo C. medRxiv. Preprint Posted May 5, 2020.

[2] A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2. Wu Y. et al., Science. 13 May 2020 [Epub ahead of publication]

[3] Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Pinto D, Park YJ, Beltramello M, Veesler D, Cortil D, et al. Nature. 18 May 2020 [Epub ahead of print]

[4] Accelerating COVID-19 therapeutic interventions and vaccines (ACTIV): An unprecedented partnership for unprecedented times. Collins FS, Stoffels P. JAMA. 2020 May 18.

Links:

Coronavirus (COVID-19) (NIH)

Monoclonal Antibodies (National Cancer Institute/NIH)

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV)

NIH Support: National Institute of Allergy and Infectious Diseases; National Institute of General Medical Sciences


COVID-19 Brings Health Disparities Research to the Forefront

Posted on by

Zoom conversation between Francis Collins and Eliseo Perez-Stable

The coronavirus 2019 (COVD-19) pandemic has brought into sharp focus many of the troubling things that we already knew about health disparities in the United States but have failed to address. With the bright light now shining on this important issue, it is time to talk about the role research can play in reducing the disproportionate burden of COVID-19, as well as improving the health of all people in our great nation. 

In recent weeks, we’ve seen a growing list of disturbing statistics about how blacks, Hispanics, tribal communities, and some other racial, ethnic, and disadvantaged socioeconomic groups are bearing the brunt of COVID-19. One of the latest studies comes from a research team that analyzed county-by-county data gathered about a month ago. Their findings? The 22 percent of U.S. counties that are disproportionately black accounted for 52 percent of our nation’s COVID-19 cases and 58 percent of COVID-19 deaths. In a paper awaiting peer review, the team, led by Emory University, Atlanta, and amfAR, the Foundation for AIDS Research, Washington, DC., noted that neither the size of the county nor whether it was urban or rural mattered [1].

Recently, I had an opportunity to discuss the disparate burden of COVID-19 with Dr. Eliseo Pérez-Stable, Director of NIH’s National Institute on Minority Health and Health Disparities (NIMHD). Besides leading an institute, Dr. Pérez-Stable is a widely recognized researcher who studies various factors that contribute to health disparities. Our conversation took place via videoconferencing, with him linking in from his home in Washington, D.C., and me from my home in nearby Maryland. Here’s a condensed transcript of our chat:

Collins: Eliseo, you and I recently had a chance to have a pretty intense discussion with the Congressional Black Caucus about health disparities and the COVID-19 pandemic. So, could you start off with a little bit about what populations are being hit hardest?

Pérez-Stable: Collecting data about disease incidence and mortality on the basis of race and ethnicity and other important demographic factors, like socioeconomic status, had really been absent in this pandemic until recently.

Part of that I think is entirely understandable. Hospitals were pressed with a surge of very sick patients, and there was a certain amount of fear and panic in the community. So, people were not completing all these forms that usually get turned in to the health departments and then forwarded to the CDC. If you go back in history, similar things happened in the early 1980s with the HIV epidemic. We weren’t collecting data on race and other sociodemographic variables initially. But, with time, we did complete these data and a picture emerged.

With the COVID-19 pandemic, obviously, the outcomes are much faster, with over 60,000 deaths in just a matter of three months. And we started to see reports, initially out of Connecticut, Milwaukee, Chicago, and New Orleans, that African Americans were dying at a disproportionate rate.

Now, the initial—and I think still the most likely—explanation for this higher mortality relates to two factors. The first is a higher rate of co-morbidities. We know that if you have cardiovascular disease, more than mild obesity, or diabetes, you’re more likely to get severe COVID-19 and potentially die from it. So, we could have just said, “Aha! It’s obvious why this population, and others with higher rates of co-morbidities might be expected to have higher rates of severe disease and higher mortality.”

But there is a second factor that relates to getting infected, for which we have much-less clear data. There was recently a map in The Washington Post showing the distribution of the rate of COVID-19 infections in Washington, D.C., by ward. The highest rates are in the wards that are east of the Anacostia River, which are about 90 percent African American. So, there is an appearance of a correlation between the proportion of African Americans in the community and the rate of Covid-19 infection. Now why could that be?

Collins: Yes, what explains that?

Pérez-Stable: Well, I think crowding is part of it, certainly in this neighborhood. A second option would be multiple families living under one roof.

Collins: So, you can’t exactly practice physical distancing very well in that situation.

Pérez-Stable:  Absolutely. You and I can go into our respective rooms, probably have our respective bathrooms, and socially and physically isolate from the rest of the household if need be. Many people can’t do that. They have three generations in one small apartment, all using one bathroom, maybe two bedrooms for six or eight people.

So, we do face different conditions by which one casual infection can lead to much more community transmission. But much information still needs to be ascertained and there does seem to be some regional variance. For example, in Chicago, Milwaukee, and Atlanta, the reports, at least initially, are worse than they are in Connecticut or Florida. Also, New York City, which has been the epicenter of the U.S. for this pandemic, has an increased rate of infections and mortality among Latino-Hispanic populations as well. So, it isn’t isolated to an African-American issue.

Collins: What about access to healthcare?

Pérez-Stable: Again, we can postulate based on a little bit of anecdote and a little bit of data. I’m a general internist by background, and I can see the enormous impact this pandemic has had on healthcare settings.

First, elective ambulatory visits and elective admissions to the hospital have been postponed, delayed, or cancelled. About 90 percent of ambulatory care is occurring through telemedicine or telephone connections, so in-person visits are occurring only for really urgent matters or suspected COVID-19.

If you have health insurance and can use systems, you can probably, through telephone triage with a nurse, get either approval or nonapproval for being tested [for COVID-19], drive to a place, get tested by someone wearing protective equipment, and never actually have to visit with anyone. And you’ll get your result now back as soon as one day, depending on the system. Now, if you’re insured, but don’t really know how to use systems, navigating all these things can be a huge challenge. So, that could be a factor.

People are also afraid to come to clinic, they’re afraid to show up at the emergency room, because they’re afraid to get infected. So, they’re worried about going in, unless they get very sick.  And when they get very sick, they may be coming in with more advanced cases [of COVID-19].

So, telephone triage, advice from clinicians on the phone, is critical. We are seeing some doctors base their decisions on whether a person is able to breathe okay on the phone, able to say a whole sentence without catching their breath. These kinds of basic things that we learned in clinical medicine training are coming into play in a big way now, because we just cannot provide the kind of care, even in the best of circumstances, that people may need.

Of course, uninsured patients will have even more barriers, although everyone in the healthcare system is trying their best to help patients when they need to be helped, rather than depend on insurance triage.

Collins: A big part of trying to keep the disease from spreading has been access to testing so that people, even those with mild symptoms, can find out if they have this virus and, if so, quarantine and enable public health workers to check out their contacts. I’m guessing, from what you said, that testing has been happening a lot less in urban communities that are heavily populated by African Americans and that further propagates the spread of the disease. Am I right?

Pérez-Stable: So far, most testing has been conducted on the basis of symptoms. So, if you have enough symptoms that you may potentially need to be hospitalized, then you get tested. Also, if you’re a healthcare worker who had contact with a COVID-19 patient, you might be tested, or if there’s someone you’ve been very close to that was infected, you may be tested. So, I don’t think so much it’s a matter of disproportionate access to testing by one group or another, as much as that the overall triage and selection criteria for testing have been rather narrow. Up until now, it has not been a simple process to get tested for COVID-19. As we scale up and get better point-of-care tests and much easier access to getting tested, I think you’ll see dissemination across the board.

Collins: It’s interesting we’re talking about this, because this is an area that Congress recently came to NIH and said, “We want you to do something about the testing by encouraging more technology, particularly technology that can be distributed to the point-of-care, and that is out in the community.”

Everyone wants a test that gives you a quick turnaround, an answer within an hour, instead of maybe a day or two. A big part of what NIH is trying to do is to make sure that if we’re going to develop these new testing technologies, they get deployed in places that otherwise might not have much access to testing—maybe by working through the community health centers. So, we’re hoping we might be able to make a contribution there.

Pérez-Stable: The economic factors in this pandemic are also huge. A significant proportion of the population that we’re referring to—the disparity population, the minorities, the poor people—work in service jobs where they’re on the front line. They were the restaurant servers and people in the kitchen, they’re still the bus drivers and the Uber drivers, and those who are working in pharmacies and supermarkets.

On the one hand, they are at higher risk for getting infected because they’re in more contact with people. On the other hand, they’re really dependent on this income to maintain their household. So, if they test positive or get exposed to COVID-19, we really do have a challenge when we ask them to quarantine and not go to work. They’re not in a position where they have sick leave, and they may be putting themselves at risk for being laid off.

Collins: Eliseo, you’ve been studying health disparities pretty much your whole research career. You come from a community where health disparities are a reality, having been born in Cuba and being part of the Latino community. Did you expect that COVID-19 would be this dramatic in the ways in which it has so disproportionately affected certain groups?

Pérez-Stable: I can’t say that I did. My first thought as a physician was to ask: “Is there any reason to think that an infectious agent like COVID-19 would disproportionally infect or impact any population?” My gut answer was “No.” Infectious diseases usually seem to affect all people; sort of equal opportunity invaders. There are some data that would say that influenza and pneumonia are not any worse among African Americans or Latinos than among whites. There are some slight differences in some regions, but not much.

Yet I know this a question that NIH-funded scientists are interested in addressing. We need to make sure that there aren’t any particular susceptibility factors, possibly related to genetics or the lung epithelium, that lead to such different COVID-19 outcomes in different individuals. Clearly, something must be going on, but we don’t know what that is. Maybe one of those factors tracks through race or ethnicity because of what those social constructs represent.

I recently listened to a presentation by Rob Califf, former FDA Commissioner, who spoke about how the pandemic has created a spotlight on our disparities-creating system. I think much of the time this disparities-creating system is in the background; it doesn’t really affect most people’s daily lives. Now, we’re suddenly hit with a bucket of cold water called COVID-19, and we’re saying what is going on and what can we do about it to make a difference. I hope that, once we begin to emerge from this acute crisis, we take the opportunity to address these fundamental issues in our society.

Collins: Indeed. Let’s talk about what you’re doing at NIMHD to support research to try to dig into both the causes of health disparities and the interventions that might help.

Pérez-Stable: Prompted by your motivation, we started talking about how minority health and health disparities research could respond to this pandemic. In the short-term, we thought along the lines of how can we communicate mitigation interventions, such as physical distancing, in a more effective way to our communities? We also asked what we could do to enhance access to healthcare for our populations, both to manage chronic conditions and for diagnosis and treatment of acute COVID-19.

We also considered in the mid- and long-term effects of economic disruption—this surge of unemployment, loss of jobs, loss of insurance, loss of income—on people’s health. Worries include excess use of alcohol and other substances, and worsening of mental and emotional well-being, particularly due to severe depression and chronic mental disorders not being well controlled. Intimate partner violence has already been noted to increase in some countries, including France, Spain, and the United States, that have gone on physical distancing interventions. Similarly, child abuse can be exacerbated under these circumstances. Just think of 24/7 togetherness as a test of how people can hold it together all the time. I think that that can bring out some fragility. So, interventions to address these, that really activate our community networks and community-based organizations, are real strengths. They build on the resilience of the community to highlight how we can get through this difficult period of time.

I feel optimistic that science will bring answers, in the form of both therapies and vaccines. But in the meantime, we have a way to go and we a lot to do.  

Collins: You mentioned the promise of vaccines. The NIH is working intensively on this, particularly through a partnership called ACTIV, Accelerating Covid-19 Therapeutic Interventions and Vaccines. We hope that in several more months, we’ll be in a position to begin testing these vaccines on a large scale, after having some assurances about their safety and efficacy. From our conversation, it sounds like we should be trying to get early access to those vaccines to people at highest risk, including those in communities with the heaviest burden. But how will that be received? There hasn’t always been an easy relationship between researchers, particularly government researchers, and the African-American community.

Pérez-Stable: I think we have learned from our historical experiences that mistrust of the system is real. To try to pretend that it isn’t there is a big mistake. Address these concerns upfront, obtain support from thought leaders in the community, and really work hard to be inclusive. In addition to vaccines, we need participation in any clinical trials that are coming up for therapeutics.

We also need research on how optimally to communicate this with all the different segments of the population. This includes not just explaining what it means to be eligible for vaccine trials or therapeutic trials, but also discussing the consequences of, say, getting tested, whether it be a viral or antibody test. What does the information mean for them?  

Most people just want to know “Am I clear of the virus or not?” That certainly could be part of the answer, but many may require more nuanced responses. Then there’s behavior. If I’m infected and I recover, am I safe to go back out and do things that other people shouldn’t do? We’d love to be able to inform the population about that. But, as you know, we don’t really have the answers to that just yet.

Collins: Good points. How do we make sure, when we’re trying to reach out to populations that have shouldered such a heavy burden, that we’re actually providing information in a fashion that is readily understood?

Pérez-Stable:  One thing to keep in mind is the issue of language. About 5 to 10 percent of U.S. adults don’t speak English well. So, we really have to address the language barrier. I also want to highlight the challenge that some tribal nations are facing. Navajo country has had particular challenges with COVID-19 infections in a setting of minimal medical infrastructure. In fact, there are communities that have to go and get their water for the day at a distant site, so they don’t have modern plumbing. How can we recommend frequent hand washing to someone who doesn’t even have running water at home? These are just a few examples of the diversity of our country that need to be addressed as we deal with this pandemic.

Collins:  Eliseo, you’ve given us a lot to think about in an obviously very serious situation. Anything you’d like to add?

Pérez-Stable:  In analyzing health outcomes, researchers often think about responses related to a metabolic pathway or to a gene or to a response to a particular drug. But as we use the power of science to understand and contain the COVID-19 pandemic, I’d like to re-emphasize the importance of considering race, ethnicity, socioeconomic status, the built environment, the social environment, and systems. Much of the time these factors may only play secondary roles, but, as in all science related to humans, I think they have to be considered. This experience should be a lesson for us to learn more about that.

Collins: Thank you for those wonderful, inspiring words. It was good to have this conversation, Eliseo, because we are the National Institutes of Health, but that has to be health for everybody. With COVID-19, we have an example where that has not turned out to be the case. We need to do everything we can going forward to identify ways to change that.

Reference:

[1] Assessing Differential Impacts of COVID-19 on Black Communities. Millet GA et al. MedRxiv. Preprint posted on May 8, 2020.

Links:

Video: Francis Collins and Eliseo Pérez-Stable on COVID-19 Health Disparities (NIH)

Coronavirus (COVID-19) (NIH)

Director’s Corner (National Institute on Minority Health and Disparities/NIH)

COVID-19 and Racial/Ethnic Disparities. Webb Hooper M, Nápoles AM, Pérez-Stable EJ.JAMA. 2020 May 11.

amfAR Study Shows Disproportionate Impact of COVID-19 on Black Americans, amfAR News Release, May 5, 2020.



Rising to the COVID-19 Challenge: Rapid Acceleration of Diagnostics (RADx)

Posted on by

NIH Rapid Acceleration of Diagnostics (RADx) Initiative for COVID-19
Credit: NIH

Step into any major medical center, and you will see the amazing power of technology at work. From X-rays to functional MRIs, blood typing to DNA sequencing, heart-lung machines to robotic surgery, the progress that biomedical technology has made over the past century or so stands as a testament to human ingenuity—and its ability to rise to the all-important challenge of saving lives and improving health.

Today, our nation is in the midst of trying to contain a most formidable health threat: the global coronavirus disease 2019 (COVID-19) pandemic. I’m convinced that biomedical technology has a vital role to play in this urgent effort, which is why the NIH today launched the Rapid Acceleration of Diagnostics (RADx) Initiative.

Fueled by a bold $1.5 billion investment made possible by federal stimulus funding, RADx is an urgent call for science and engineering’s most inventive and visionary minds—from the basement to the board room—to develop rapid, easy-to-use testing technologies for SARS-CoV-2, the novel coronavirus that causes COVID-19. To achieve this, NIH will work closely with our colleagues at the Biomedical Advanced Research and Development Authority, the Centers for Disease Control and Prevention, and the Food and Drug Administration.

If all goes well, RADx aims to support innovative technologies that will make millions more rapid SARS-CoV-2 tests available to Americans by late summer or fall. Such widespread testing, which will facilitate the speedy identification and quarantine of infected individuals and their contacts, will likely be a critical component of making it possible for Americans to get safely back into public spaces, including returning to work and school.

For history buffs and tech geeks, the RADx acronym might ring a bell. During the World War II era, it was the brainstorming of MIT’s “Rad Lab” that gave birth to radar—a groundbreaking technology that, for the first time, enabled humans to use radio waves to “see” planes, storm systems, and many other things. Radar played such a valuable role in finding bombing targets, directing gunfire, and locating enemy aircraft, ships, and artillery that some have argued that this technology actually won the war for the U.S. and its Allies.

As for NIH’s RADx, our aim is to speed the development and commercialization of tests that can rapidly “see” if people have been infected with SARS-CoV-2 with very high sensitivity and specificity, meaning there would be few false negatives and false positives. A key part of this effort, which started today, will be a national technology development competition that’s open to all comers. In this competition, which begins a bit like a “shark tank,” participants will vie for an ultimate share of an approximately $500 million fund that will be awarded to help advance the most-promising testing technologies.

The proposals will undergo an initial review for technical, clinical, commercial, and regulatory issues. For example, could the testing technology be easily scaled up? Would it provide clear advantages over existing approaches? And would the U.S. health-care system realistically be able to adopt the technology rapidly? If selected, the proposals will then enter a three-phase process that will run into summer. Each development team will receive its own initial budget, deadlines, and set of deliverables. Competitors must also work collaboratively with an assigned expert and utilize associated web-based tools.

As you see in the graphic above, each phase will whittle down the competition. Those testing technologies that succeed in making it to Phase 2 will receive an appropriate budget to enable full clinical deployment on an accelerated timeline. They will also be matched with technical, business, and manufacturing experts to boost their chances of success.

Of course, not all technologies will enter the competition at the same stages of development. Those that are already relatively far along will be “fast tracked” to a phase that corresponds with their place in the commercialization process. Our hope is that the winning technologies will feature patient- and user-friendly designs, mobile-device integration, affordable cost, and increased accessibility, for use at the point of care (or even at home).

To assist competitors in their efforts to accomplish these bold goals, RADx will expand the Point-of-Care Technologies Research Network, which was established several years ago by NIH’s National Institute of Biomedical Imaging and Bioengineering (NIBIB). The network supports hundreds of investigators through five technology hubs at: Emory University/Georgia Institute of Technology, Atlanta; Johns Hopkins University, Baltimore; Northwestern University, Evanston, IL; University of Massachusetts Medical School, Worcester; and the Consortia for Improving Medicine with Innovation & Technology at Harvard Medical School/Massachusetts General Hospital, Boston.

RADx is focused on diagnostic testing, but NIH is also intensely engaged in developing safe, effective therapies and vaccines for COVID-19. One innovative effort, called Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV), is a public-private partnership that aims to speed the development of ways to treat and prevent this disease that’s caused so much suffering and death around the globe.

So, to the U.S. science and engineering community, I have these words: Let’s get going—our nation has never needed your skills more!

Links:

Coronavirus (COVID-19) (NIH)

NIH mobilizes national innovation initiative for COVID-19 diagnostics, NIH news release, April 29, 2020

Point-of-Care Technologies Research Network (National Institute of Biomedical Imaging and Biotechnology/NIH)

NIH to launch public-private partnership to speed COVID-19 vaccine and treatment options, NIH news release, April 17, 2020.

We Need More COVID-19 Tests. We Propose a ‘Shark Tank’ to Get There, Lamar Alexander, Roy Blunt. Washington Post, April 20, 2020.