Skip to main content

heart attack

Can Barbers Help Black Men Lower Their Blood Pressure?

Posted on by

Barbershop trial

Caption: Barber Eric Muhammad (left) in his barbershop taking the blood pressure of patron.
Credit: Smidt Heart Institute, Cedars-Sinai Medical Center

You expect to have your blood pressure checked and treated when you visit the doctor’s office or urgent care clinic. But what about the barbershop? New research shows that besides delivering the customary shave and a haircut, barbers might be able to play a significant role in helping control high blood pressure.

High blood pressure, or hypertension, is a particularly serious health problem among non-Hispanic black men. So, in a study involving 52 black-owned barbershops in the Los Angeles area, barbers encouraged their regular, black male patrons, ages 35 to 79, to get their blood pressure checked at their shops [1]. Nearly 320 men turned out to have uncontrolled hypertension and enrolled in the study. In a randomized manner, barbers then encouraged these men to do one of two things: attend one-on-one barbershop meetings with pharmacists who could prescribe blood pressure medicines, or set up appointments with their own doctors and consider making lifestyle changes.

The result? More than 63 percent of the men who received medications prescribed by specially-trained pharmacists lowered their blood pressure to healthy levels within 6 months, compared to less than 12 percent of those who went to see their doctors. The findings serve as a reminder that helping people get healthier doesn’t always require technological advances. Sometimes it may just involve developing more effective ways of getting proven therapy to at-risk communities.


Does Gastric Bypass Reduce Cardiovascular Complications of Diabetes?

Posted on by

Doctor with patient

Thinkstock/IPGGutenbergUKLtd

For obese people with diabetes, doctors have increasingly been offering gastric bypass surgery as a way to lose weight and control blood glucose levels. Short-term results are often impressive, but questions have remained about the long-term benefits of such operations. Now, a large, international study has some answers.

Soon after gastric bypass surgery, about 50 percent of folks not only lost weight but they also showed well-controlled blood glucose, cholesterol, and blood pressure. The good news is that five years later about half of those who originally showed those broad benefits of surgery maintained that healthy profile. The not-so-good news is that the other half, while they generally continued to sustain weight loss and better glucose control, began to show signs of increasing risk for cardiovascular complications.


Missing Genes Point to Possible Drug Targets

Posted on by

Human knockout projectEvery person’s genetic blueprint, or genome, is unique because of variations that occasionally occur in our DNA sequences. Most of those are passed on to us from our parents. But not all variations are inherited—each of us carries 60 to 100 “new mutations” that happened for the first time in us. Some of those variations can knock out the function of a gene in ways that lead to disease or other serious health problems, particularly in people unlucky enough to have two malfunctioning copies of the same gene. Recently, scientists have begun to identify rare individuals who have loss-of-function variations that actually seem to improve their health—extraordinary discoveries that may help us understand how genes work as well as yield promising new drug targets that may benefit everyone.

In a study published in the journal Nature, a team partially funded by NIH sequenced all 18,000 protein-coding genes in more than 10,500 adults living in Pakistan [1]. After finding that more than 17 percent of the participants had at least one gene completely “knocked out,” researchers could set about analyzing what consequences—good, bad, or neutral—those loss-of-function variations had on their health and well-being.


Cool Videos: Heart Attack

Posted on by

Blood Clots Video screenshot

Up next in our scientific film fest is an original music video, straight from the Big Apple. Created by researchers at The Rockefeller University, this song-and-dance routine provides an entertaining—and informative—look at how blood clots form, their role in causing heart attacks, and what approaches are being tried to break up these clots.

Before (or after!) you hit “play,” it might help to take a few moments to review the scientists’ description of their efforts: the key to saving the lives of heart attack victims lies in the molecules that control how blood vessels become clogged. This molecular biomedicine music video explains how ischemic injury can be prevented shortly after heart attack symptoms begin: clot blocking. The science is the collaborative work of Dr. Barry Coller of Rockefeller, Dr. Craig Thomas and his colleagues at the National Center for Advancing Translational Sciences (NCATS), and Dr. Marta Filizola and her Mount Sinai colleagues.

Links:

Laboratory of Blood and Vascular Biology, The Rockefeller University

Filizola Laboratory, Icahn School of Medicine at Mount Sinai

Center for Clinical and Translational Science, The Rockefeller University

Clinical and Translational Science Awards (NCATS/NIH)

NIH Common Fund Video Competition

NIH support: Common Fund; National Center for Advancing Translational Sciences


Snapshots of Life: Mending Broken Hearts

Posted on by

Green strings over blue ovals and red dots

Caption: Micrograph of laboratory-grown rat heart muscle cells. Fluorescent labeling shows mitochondria (red), cytoskeleton (green), and nuclei (blue).
Credit: Credit: Douglas B. Cowan and James D. McCully, Harvard Medical School, Boston

This may not look like your average Valentine’s Day card, but it’s an image sure to warm the hearts of many doctors and patients. Why? This micrograph, a winner in the Federation of American Societies for Experimental Biology’s 2013 BioArt Competition, shows cells that have been specially engineered to repair the damage done by heart attacks—which strike more than 700,000 Americans every year.

Working with rat heart muscle cells grown in a lab dish, NIH-supported bioengineers at Harvard Medical School used transplant techniques to boost the number of tiny powerhouses, called mitochondria, within the cells. If you look closely at the image above, you’ll see the heart muscle cells are tagged in green, their nuclei in blue, and their mitochondria in red.


Next Page