Skip to main content

health disparities

Swimming with the High-Tech Sharks to Improve COVID-19 Testing

Posted on by

At Home with Bruce Thromburg

So much has been reported over the past six months about testing for coronavirus disease 2019 (COVID-19) that keeping up with the issue can be a real challenge. To discuss the latest progress on new technologies for SARS-CoV-2 diagnostic testing in the United States, I spoke recently with NIH’s Dr. Bruce Tromberg, director of the National Institute of Biomedical Imaging and Bioengineering (NIBIB). Not only does Bruce run a busy NIH institute, he is helping to coordinate the national response for expanded testing during the COVID-19 pandemic.

Bruce also has a leading role in one of NIH’s most-exciting new initiatives. It’s called the Rapid Acceleration of Diagnostics (RADx) initiative, and it is on the fast track to bolster the country’s diagnostic testing capacity within months. Here’s a condensed transcript of our chat, which took place via videoconference, with Bruce linking in from Bethesda, MD and me from my home in Chevy Chase, MD:

Collins: Let’s start with how many COVID-19 tests are being done right now per day in the United States. By that, I’m referring to testing for the presence of the novel coronavirus, not antibodies as a sign of a previous infection.

Tromberg: The numbers fluctuate—anywhere from around 400,000 to 900,000 tests per day. So, the national capacity, with all these complex laboratory tests and emerging point-of-care assays, is getting close to 1 million a day. That’s substantially higher than in mid-April, when the nation was doing about 150,000 tests per day. But most testing is still being done in laboratories or complex facilities, and it can take a while for those tests to be run and for people to get answers. What we’d like to have are more convenient tests. We’d like to have tests that people can have at the point of care, where you get an answer on the spot and very quickly, or tests that can be performed easily in their homes.

Collins: Yes, we’d all love to have point-of-care tests for COVID-19. And there are some out there already. Every time I go to the White House, they have this gadget, called Abbott ID Now, that gives a result in about 15 minutes. That sounds pretty good. Do we just need to make more of those machines to solve the problem?

Tromberg: Abbott ID Now is one of the first point-of-care technologies. It’s not complicated, so a specialized laboratory isn’t required to run them. That’s what makes Abbott ID Now very appealing, but its performance could be better. There’s a bit of a risk when it’s used in individuals for which you really need to know, with absolute certainty, if they have the virus or not. Those performance issues have created opportunities to build platforms that are better, faster, and possible for people to do on their own.

Collins: Congress provided a big infusion of resources last April to assist in the development of new diagnostic technologies for COVID-19. A lot of that infusion came to NIH, and, Bruce, you were asked to step in and make something amazing happen on a timetable that’s pretty breathtaking. It’s called the RADx Initiative. Tell us a little about that.

Tromberg: RADx is short for Rapid Acceleration of Diagnostics. The goal of the initiative is to make it possible for everyone to have access to diagnostic testing for COVID-19 as easily and quickly as possible. As we pivot to doing surveillance in large populations, we will need greater testing capacity to help optimize the management of each individual. So, that’s really the aim of RADx, or RADx-tech, which is a special flavor of RADx.

Collins: Right, the goal of RADx-tech, which you are overseeing, is to identify some of these exciting new technologies and help scale them up quickly to the point where they can help people across the nation. Could you give us some examples?

Tromberg: Sure. One general class of technologies is called a lateral flow assay. These tests are small enough to fit in your hand and come in a convenient container. Basically, you can use a swab from your oral cavity and place it on one of the pads, and then you add a little bit of solution. The actual assay itself has a membrane inside of a little plastic container. The fluid flows across the membrane, and there’s chemistry that goes on inside the container to detect, for example, genetic material from the coronavirus. So, it can tell you if there is a presence of virus inside the swab. It’s very quick and straightforward. A line will “light up” if virus is present.

Another type of lateral flow assay, also small enough to hold in your hand, looks for proteins on the surface of the virus. You don’t have to break up the virus particle itself, but in this specific example, what captures the virus in this membrane is what’s called an aptamer. An aptamer is similar to an antibody, except it’s made from nucleic acid. It’s designed to bind very tightly with any molecule of interest. If you put a saliva sample into this assay, it moves up the membrane and some chemistry takes place. And then, you’ll see a line appear if there’s presence of a virus.

Collins: You just said saliva. I think a lot of people would much prefer, if they had to provide a sample, to use saliva instead of having a swab stuck in their nose, especially if it has to go all the way to the back of the nose. Does saliva work?

Tromberg: We hope so. Right now, RADx-tech has at least nine companies that are in what we call phase one, which is a significant step towards commercialization. Of those companies, more than half are looking at saliva or other kinds of sampling that’s not sticking swabs way up into the nasal cavity.

Another type of test is a lateral flow assay that fits directly into a mobile device like a tablet. It has a separate lateral flow apparatus, which looks like an elongated zip drive, and it slides right into the tablet itself. It’s something that’s not complicated. It would be easy to do at home. But rather than watching for the presence of a reaction, you look for a light inside the tablet to say the result is ready. And then, there is another color of light that comes directly from the lateral flow strip, that’s an indicator that the virus is present.

One last example is a nucleic acid test. This rectangular, hand-held device (see photo), reminiscent of a computer disc, looks inside the virus to amplify small traces of its nucleic acid to detectable levels. It is completely self-contained. To find that technology today, you generally must go to complex laboratories where the test is done on big machines, operated in multiple steps. Efforts are being made to reduce the size and the complexity of these devices so they can move out to point of care, without sacrificing the performance that we expect from a laboratory-based device.

Collins: That’s totally cool. Is the nucleic-acid test device that you just mentioned made for one-time use, and then you throw it away?

Tromberg: That’s their business model right now. I should probably mention something about cost. For example, you can imagine scaling up lateral flow assays very quickly to make tens of millions of tests. The components are inexpensive, and the tests may cost just a few dollars to make.

If you’re throwing away a nucleic acid test with its more-expensive components, obviously, the cost will be higher. Right now, if you go to a laboratory for a nucleic acid test, the cost may be on the order of $40 or so. With these one-time-use nucleic acid tests, the aim is to scale up the manufacturing to produce larger volumes that will bring the cost down. The estimates are maybe $60 per test.

Collins: That needs to come down more, obviously. In the months ahead, we’re talking about testing millions of people, maybe even fairly often to make sure that they haven’t been infected by SARS-CoV-2, the novel coronavirus that causes COVID-19. Is frequent testing the kind of thing that you’d like to be able to do by next fall?

Tromberg: Yes, and I think that that really speaks to the diversity of the types of tests that we need. I think there is a market, or the capacity, for some of the more expensive tests, if they’re extremely accurate and convenient. So, the nucleic acid test may cost more, but it will give you an answer very quickly and with very high sensitivity. It’s also very convenient. But the performance of that test may be very different from a standard lateral flow assay. Those tests will be far more accessible and very, very inexpensive, but they may have a higher false negative rate. We envision that every test that comes out of our innovation funnel will have documentation about its best-use case.

Collins: You mentioned your innovation funnel, sometimes called a “shark tank.” Say a little more about the RADx-tech shark tank. Who gets into it, and what happens when they get there?

Tromberg: At NIH, we’re into processes, and NIBIB created a very effective one 13 years ago with the Point of Care Technology Research Network (POCTRN). We’ve now leveraged this network to focus almost exclusively on COVID testing. POCTRN has five sites in the US. All have core resources, personnel, and expertise that are contributing to RADx-tech. Those include the ability to validate tests independently, the ability to do clinical studies in real-world samples and patients, and the ability to analyze manufacturing and scale-up needs while creating a roadmap for every project team to follow.

We have more than 200 people around the country working day and night on this process. If anyone has an idea about a COVID-19 test, you can and apply for funding on the POCTRN website. Your application will be reviewed by a panel of 30 experts within a day and, if approved, will move to the next stage, which is the shark tank.

In the shark tank [also called phase zero], a team of experts will spend about 150 to 200 person-hours with you evaluating the strengths and weaknesses of your test technically, clinically, and commercially. From this careful analysis, a detailed proposal will be presented to a steering committee, then sent to NIH. If we think it’s a great idea, the project will enter what we call phase one, with considerable financial support and the expectation that the company will hit its validation milestones within a month.

Collins: How far have things progressed, given that you just started RADx on April 29?

Tromberg: We have almost 60 projects that have entered or emerged from this shark-tank stage. I’m expecting that we’ll have around 15 projects in the phase one stage this month, and it’s very exciting to see them move there. If they can reach their validation milestones in that first month, they will be eligible to move to phase two. It involves a much larger chunk of money, so companies can move into manufacturing and scale up for distribution. We’re hoping to have between five and 10 companies emerge over time from this innovation funnel. But, by the end of the summer, we’d like to see at least two come out with products that will make a difference.

Collins: Wow, that’s just a few months away. How will you can get there so fast?

Tromberg: Sure. Some companies are further along than others. I can think of one that is quite far along with an established platform concept. This company has lots of expertise and has raised lots of money. We may be able to give them the surge that they need, plus the additional support with regulatory issues, commercialization, and manufacturing, in that short period of time to go to market.

Complementing that work is another of our initiatives called Advanced Technology Platforms (RADx-ATP). It’s designed to scale up existing technologies. For example, I mentioned a one-time-use nucleic acid test. It still needs validation, emergency use authorization, a little bit of manufacturing optimization. But we have other platforms out there that are much closer to commercialization, and RADx-ATP could be very impactful in getting some of those technologies out earlier.

Collins: You mentioned RADx-ATP, and we’ve been talking about RADx-tech, which is your shark tank approach. But there are a couple of other RADx components. Say something about those, please.

Tromberg: Our centerpiece component for doing demonstration projects is called RADx-UP. This is an effort across NIH to provide cutting-edge testing technologies in underserved populations. If I’m allowed to be the interviewer and turn the tables, I might bounce the question back to you. This is where your thinking directly influenced the whole RADx portfolio. So, maybe you can tell us more.

Collins: I can try. It’s very clear that COVID-19 has hit certain populations particularly hard, especially African American and Hispanic communities. And yet, those communities often have the least access to testing, which is sort of upside-down. We want to help identify people who are infected quickly, do the quarantining, and prevent the infection from spreading. That has simply not worked very well in a lot of underserved communities.

With resources from Congress, we made it a very high priority to set up demonstration projects of these advanced technologies in communities that would benefit significantly from them. We’re trying to bring together two really important NIH priorities: technology development and addressing health disparities. I’ve got to say, at this particular moment, when we’re all really focused on the fact that our nation is still riddled with health disparities, health inequities, and even racism, this is a moment where we should be doing everything we can to try to take our scientific capabilities and apply them to finding solutions.

So, we’re all pretty excited about RADx-UP. But there’s one other RADx, and I’ll throw this one back to you. It’s called RADx-rad. What the heck is that, Bruce?

Tromberg: Well, RADx-rad is the home for the technologies that are really far forward and futuristic. These are the technologies that won’t quite be ready for the time pressure of the innovation funnel. But they’re fantastic ideas. They’re projects that may be non-traditional in terms of the application of technology. They have been generated largely by other NIH institutes and centers. They’re important ideas and projects that just need to be supported with a longer time-window of return. We don’t want to lose out on the energy and the ideas and the creativity of those concepts.

Collins: Right now, the focus is on COVID-19 and the need for testing, especially within this calendar year. We hope, by the end of 2020 or the early part of 2021, to have vaccines for COVID-19 ready to go. But, moving forward, there will be other events that will probably make us wish that we had point-of-care diagnostics. So, in the process of doing what you’re doing with all of these components, hopefully we’re also preparing for future challenges.

Bruce, you’re an optimistic guy. At the same time, we’ve got to be realistic. Around September, when schools and colleges are contemplating whether it’s safe to open up, what would we hope that RADx could contribute to make that a better outcome?

Tromberg: That’s a tough question to answer, but I have a lot of confidence in our process. I’m confident that we’re engaging the innovation and entrepreneurial community in such a way that a lot of these ideas will move out and give us better performing tests and more of them. A rough number that I like to think about is the capacity to test roughly 2 percent of the population, around 6 million people per day. I think we’ll hit that target by the end of the year.

I’d like to see testing technologies move away from being based predominantly in laboratories. I’d like to see them more accessible to people as technologies that they can use in their homes. We’re now doing so many things from home. We’re working from home, we’re talking from home, we get our entertainment from home. Home-based testing is really the direction a lot of healthcare is going. We need to have these technologies. I think the level of sophistication and performance that we’re hoping for is possible, and the innovation and entrepreneurial community is working extremely hard to make it happen. No one has really asked us to do anything of this scale before, and I like to compare it to our Super Bowl.

Collins: Well, this is one exciting Super Bowl, that’s for sure! You’ve applied the venture capitalist strategy to RADx of trying to discover what’s out there, while not being afraid to invest in risky endeavors. You’re figuring out how to help promising technologies take their best shot and fail early, if they’re going to fail. And for technologies that are further along, you give them the needed resources to advance to commercialization.

We have great hopes and expectations that RADx will make a real difference. What we’re doing here is not just about cool science, it’s also about saving lives. I want to thank you for your incredible dedication, and your intellectual and engineering contributions to this initiative, which make it one of the most exciting things that NIH is doing right now.

Tromberg: Thank you, Francis.

Links:

Coronavirus (COVID-19) (NIH)

Rapid Acceleration of Diagnostics (RADx)

Social engineering and bioengineering together can thwart the COVID-19 pandemic,” Director’s Corner, National Institute of Biomedical Imaging and Bioengineering/NIH)

Video: RADx Tech and POCTRN: Diagnosing Disease-Delivering Health (NIBIB/NIH)


Searching for Ways to Prevent Life-Threatening Blood Clots in COVID-19

Posted on by

At Home with Gary Gibbons

Six months into the coronavirus disease 2019 (COVID-19) pandemic, researchers still have much to learn about the many ways in which COVID-19 can wreak devastation on the human body. Among the many mysteries is exactly how SARS-CoV-2, which is the novel coronavirus that causes COVID-19, triggers the formation of blood clots that can lead to strokes and other life-threatening complications, even in younger people.

Recently, I had a chance to talk with Dr. Gary Gibbons, Director of NIH’s Heart, Lung, and Blood Institute (NHLBI) about what research is being done to tackle this baffling complication of COVID-19. Our conversation took place via videoconference, with him connecting from his home in Washington, D.C., and me linking in from my home just up the road in Maryland. Here’s a condensed transcript of our chat:

Collins: I’m going to start by asking about the SARS-CoV-2-induced blood clotting not only in the lungs, but in other parts of the body. What do we know about the virus that would explain this?

Gibbons: It seems like every few weeks another page gets turned on COVID-19, and we learn even more about how this virus affects the body. Blood clots are one of the startling and, unfortunately, devastating complications that emerged as patients were cared for, particularly in New York City. It became apparent that certain individuals had difficulty getting enough oxygen into their system. The difficulty couldn’t be explained entirely by the extent of the pneumonia affecting the lungs’ ability to exchange oxygen.

It turned out that, in addition to the pneumonia, blood clots in the lungs were compromising oxygenation. But some patients also had clotting, or thrombotic, complications in their veins and arteries in other parts of the body. Quite puzzling. There were episodes of relatively young individuals in their 30s and 40s presenting with strokes related to blood clots affecting the arterial circulation to the brain.

We’re still trying to understand what promotes the clotting. One clue involves the endothelial cells that form the inner lining of our blood vessels. These cells have on their surface a protein called the angiotensin-converting enzyme 2 (ACE2) receptor, and this clue is important for two reasons. One, the virus attaches to the ACE2 receptor, using it as an entry point to infect cells. Two, endothelial-lined blood vessels extend to every organ in the body. Taken together, it seems that some COVID-19 complications relate to the virus attaching to endothelial cells, not only in the lungs, but in the heart and multiple organs.

Collins: So, starting in the respiratory tree, the virus somehow breaks through into a blood vessel and then gets spread around the body. There have been strange reports of people with COVID-19 who may not get really sick, but their toes look frostbitten. Is “COVID toes,” as some people call it, also part of this same syndrome?

Gibbons: We’re still in the early days of learning about this virus. But I think this offers a further clue that the virus not only affects large vessels but small vessels. In fact, clots have been reported at the capillary level, and that’s fairly unusual. It’s suggestive that an interaction is taking place between the platelets and the endothelial surface.

Normally, there’s a tightly regulated balance in the bloodstream between pro-coagulant and anticoagulant proteins to prevent clotting and keep the blood flowing. But when you cut your finger, for example, you get activation for blood clots in the form of a protein mesh. It looks like a fishing net that can help seal the injury. In addition, platelets in the blood stream help to plug the holes in that fishing net and create a real seal of a blood vessel.

Well, imagine it happening in those small vessels, which usually have a non-stick endothelial surface, almost like Teflon, that prevents clotting. Then the virus comes along and tips the balance toward promoting clot formation. This disturbs the Teflon-like property of the endothelial lining and makes it sticky. It’s incredible the tricks this virus has learned by binding onto one of these molecules in the endothelial lining.

Collins: Who are the COVID-19 patients most at risk for this clotting problem?

Gibbons: Unfortunately, it appears right now that older adults are among the most vulnerable. They have a lot of the risks for the formation of these blood clots. What’s notable is these thrombotic complications are also happening to relatively young adults or middle-aged individuals who don’t have a lot of other chronic conditions, or comorbidities, to put them at higher risk for severe disease. Again, it’s suggestive that this virus is doing something that is particular to the coagulation system.

Collins: We’d love to have a way of identifying in advance the people who are most likely to get into trouble with blood clotting. They might be the ones you’d want to start on an intervention, even before you have evidence that things are getting out of control. Do you have any kind of biomarker to tell you which patients might benefit from early intervention?

Gibbons: Biomarkers are being actively studied. What we do know from some earlier observations is that you can assess the balance of clotting and anticlotting factors in the blood by measuring a biomarker called D-dimer. It’s basically a protein fragment, a degradation product, from a prior clot. It tells you a bit about the system’s activity in forming and dissolving clots.
If there’s a lot of D-dimer activity, it suggests a coagulation cascade is jazzed up. In those patients, it’s probably a clue that this is a big trigger in terms of coagulation and thrombosis. So, D-dimer levels could maybe tell us which patients need really aggressive full anticoagulation.

Collins: Have people tried empirically using blood thinners for people who seem to be getting into trouble with this clotting problem?

Gibbons: There’s a paper out of the Mount Sinai in New York City that looked at thousands of patients being treated for COVID-19 [1]. Based on clinical practice and judgments, one of the striking findings is that those who were fully anticoagulated had better survival than those who were not. Now, this was not a randomized, controlled clinical trial, where some were given full anticoagulation and others were not. It was just an observational study that showed an association. But this study indicated indirectly that by giving the blood thinners, changing that thrombotic risk, maybe it’s possible to reduce morbidity and mortality. That’s why we need to do a randomized, controlled clinical trial to see if it can be used to reduce these case fatality rates.

Collins: You and your colleagues got together and came up with a design for such a clinical trial. Tell us about that.

Gibbons: My institute studies the heart, lung, and blood. The virus attacks all three. So, our community has a compelling need to lean in and study COVID-19. Recently, NIH helped to launch a public-private partnership called Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV). As the name spells out, this initiative provides is a clinical platform to generate life-saving treatments as we wait for the development of a vaccine.

Through ACTIV, a protocol is now in the final stages of review for a clinical trial that will involve a network of hospitals and explore the question: is it sufficient to try a low-dose thrombo-prophylactic, or clot preventative, approach versus full anticoagulation? Some think patients ought to have full anticoagulation, but that’s not without risk. So, we want to put that question to the test. As part of that, we’ll also learn more about biomarkers and what could be predictive of individuals getting the greatest benefit.

If we find that fully anticoagulating patients prevents clots, then that’s great. But it begs the question: what happens when patients go home? Is it sufficient to just turn off the drip and let them go their merry way? Should they have a low dose thrombo-prophylactic regimen for a period of time? If so, how long? Or should they be fully anticoagulated with oral anticoagulation for a certain period of time? All these and other questions still remain.

Collins: This can make a huge difference. If you’re admitted to the hospital with COVID-19, that means you’re pretty sick and, based on the numbers that I’ve seen, your chance of dying is about 12 percent if nothing else happens. If we can find something like an anticoagulant that would reduce that risk substantially, we can have a huge impact on reducing deaths from COVID-19. How soon can we get this trial going, Gary?

Gibbons: We have a sense of urgency that clearly this pandemic is taking too many lives and time is of the essence. So, we’ve indeed had a very streamlined process. We’re leveraging the fact that we have clinical trial networks, where regardless of what they were planning to do, it’s all hands on deck. As a result, we’re able to move faster to align with that sense of urgency. We hope that we can be off to a quick launch within the next two to three weeks with the anticoagulation trials.

Collins: This is good because people are waiting on the vaccines, but realistically we won’t know whether the vaccines are working for several more months, and having them available for lots of people will be at the very end of this year or early 2021 at best. Meanwhile, people still are going to be getting sick with COVID-19. We want to be able to have as many therapeutic options as possible to offer to them. And this seems like a pretty exciting one to try and move forward as quickly as possible. You and your colleagues deserve a lot of credit for bringing this to everybody’s attention.

But before we sign off, I have to raise another issue of deep significance. Gary, I think both of us are struggling not only with the impact of COVID-19 on the world, but the profound sorrow, grief, frustration, and anger that surrounds the death of George Floyd. This brings into acute focus the far too numerous other circumstances where African Americans have been mistreated and subjected to tragic outcomes.

This troubling time also shines a light on the health disparities that affect our nation in so many ways. We can see what COVID-19 has done to certain underrepresented groups who have borne an undue share of the burden, and have suffered injustices at the hands of society. It’s been tough for many of us to admit that our country is far from treating everyone equally, but it’s a learning opportunity and a call to redouble our efforts to find solutions.

Gary, you’ve been a wonderful leader in that conversation for a long time. I want to thank you both for what you’re doing scientifically and for your willingness to speak the truth and stand up for what’s right and fair. It’s been great talking to you about all these issues.

Gibbons: Thank you. We appreciate this opportunity to fulfill NIH’s mission of turning scientific discovery into better health for all. If there’s any moment that our nation needs us, this is it.

Reference:

[1] Association of Treatment Dose Anticoagulation With In-Hospital Survival Among Hospitalized Patients With COVID-19. Paranjpe I, Fuster V, Lala A, Russak A, Glicksberg BS, Levin MA, Charney AW, Narula J, Fayad ZA, Bagiella E, Zhao S, Nadkarni GN. J Am Coll Cardiol. 2020 May 5;S0735-1097(20)35218-9.

Links:

Coronavirus (COVID-19) (NIH)

Rising to the Challenge of COVID-19: The NHLBI Community Response,” Director’s Messages, National Heart, Lung, and Blood Institute/NIH, April 29, 2020.

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) (NIH)


COVID-19 Brings Health Disparities Research to the Forefront

Posted on by

Zoom conversation between Francis Collins and Eliseo Perez-Stable

The coronavirus 2019 (COVD-19) pandemic has brought into sharp focus many of the troubling things that we already knew about health disparities in the United States but have failed to address. With the bright light now shining on this important issue, it is time to talk about the role research can play in reducing the disproportionate burden of COVID-19, as well as improving the health of all people in our great nation. 

In recent weeks, we’ve seen a growing list of disturbing statistics about how blacks, Hispanics, tribal communities, and some other racial, ethnic, and disadvantaged socioeconomic groups are bearing the brunt of COVID-19. One of the latest studies comes from a research team that analyzed county-by-county data gathered about a month ago. Their findings? The 22 percent of U.S. counties that are disproportionately black accounted for 52 percent of our nation’s COVID-19 cases and 58 percent of COVID-19 deaths. In a paper awaiting peer review, the team, led by Emory University, Atlanta, and amfAR, the Foundation for AIDS Research, Washington, DC., noted that neither the size of the county nor whether it was urban or rural mattered [1].

Recently, I had an opportunity to discuss the disparate burden of COVID-19 with Dr. Eliseo Pérez-Stable, Director of NIH’s National Institute on Minority Health and Health Disparities (NIMHD). Besides leading an institute, Dr. Pérez-Stable is a widely recognized researcher who studies various factors that contribute to health disparities. Our conversation took place via videoconferencing, with him linking in from his home in Washington, D.C., and me from my home in nearby Maryland. Here’s a condensed transcript of our chat:

Collins: Eliseo, you and I recently had a chance to have a pretty intense discussion with the Congressional Black Caucus about health disparities and the COVID-19 pandemic. So, could you start off with a little bit about what populations are being hit hardest?

Pérez-Stable: Collecting data about disease incidence and mortality on the basis of race and ethnicity and other important demographic factors, like socioeconomic status, had really been absent in this pandemic until recently.

Part of that I think is entirely understandable. Hospitals were pressed with a surge of very sick patients, and there was a certain amount of fear and panic in the community. So, people were not completing all these forms that usually get turned in to the health departments and then forwarded to the CDC. If you go back in history, similar things happened in the early 1980s with the HIV epidemic. We weren’t collecting data on race and other sociodemographic variables initially. But, with time, we did complete these data and a picture emerged.

With the COVID-19 pandemic, obviously, the outcomes are much faster, with over 60,000 deaths in just a matter of three months. And we started to see reports, initially out of Connecticut, Milwaukee, Chicago, and New Orleans, that African Americans were dying at a disproportionate rate.

Now, the initial—and I think still the most likely—explanation for this higher mortality relates to two factors. The first is a higher rate of co-morbidities. We know that if you have cardiovascular disease, more than mild obesity, or diabetes, you’re more likely to get severe COVID-19 and potentially die from it. So, we could have just said, “Aha! It’s obvious why this population, and others with higher rates of co-morbidities might be expected to have higher rates of severe disease and higher mortality.”

But there is a second factor that relates to getting infected, for which we have much-less clear data. There was recently a map in The Washington Post showing the distribution of the rate of COVID-19 infections in Washington, D.C., by ward. The highest rates are in the wards that are east of the Anacostia River, which are about 90 percent African American. So, there is an appearance of a correlation between the proportion of African Americans in the community and the rate of Covid-19 infection. Now why could that be?

Collins: Yes, what explains that?

Pérez-Stable: Well, I think crowding is part of it, certainly in this neighborhood. A second option would be multiple families living under one roof.

Collins: So, you can’t exactly practice physical distancing very well in that situation.

Pérez-Stable:  Absolutely. You and I can go into our respective rooms, probably have our respective bathrooms, and socially and physically isolate from the rest of the household if need be. Many people can’t do that. They have three generations in one small apartment, all using one bathroom, maybe two bedrooms for six or eight people.

So, we do face different conditions by which one casual infection can lead to much more community transmission. But much information still needs to be ascertained and there does seem to be some regional variance. For example, in Chicago, Milwaukee, and Atlanta, the reports, at least initially, are worse than they are in Connecticut or Florida. Also, New York City, which has been the epicenter of the U.S. for this pandemic, has an increased rate of infections and mortality among Latino-Hispanic populations as well. So, it isn’t isolated to an African-American issue.

Collins: What about access to healthcare?

Pérez-Stable: Again, we can postulate based on a little bit of anecdote and a little bit of data. I’m a general internist by background, and I can see the enormous impact this pandemic has had on healthcare settings.

First, elective ambulatory visits and elective admissions to the hospital have been postponed, delayed, or cancelled. About 90 percent of ambulatory care is occurring through telemedicine or telephone connections, so in-person visits are occurring only for really urgent matters or suspected COVID-19.

If you have health insurance and can use systems, you can probably, through telephone triage with a nurse, get either approval or nonapproval for being tested [for COVID-19], drive to a place, get tested by someone wearing protective equipment, and never actually have to visit with anyone. And you’ll get your result now back as soon as one day, depending on the system. Now, if you’re insured, but don’t really know how to use systems, navigating all these things can be a huge challenge. So, that could be a factor.

People are also afraid to come to clinic, they’re afraid to show up at the emergency room, because they’re afraid to get infected. So, they’re worried about going in, unless they get very sick.  And when they get very sick, they may be coming in with more advanced cases [of COVID-19].

So, telephone triage, advice from clinicians on the phone, is critical. We are seeing some doctors base their decisions on whether a person is able to breathe okay on the phone, able to say a whole sentence without catching their breath. These kinds of basic things that we learned in clinical medicine training are coming into play in a big way now, because we just cannot provide the kind of care, even in the best of circumstances, that people may need.

Of course, uninsured patients will have even more barriers, although everyone in the healthcare system is trying their best to help patients when they need to be helped, rather than depend on insurance triage.

Collins: A big part of trying to keep the disease from spreading has been access to testing so that people, even those with mild symptoms, can find out if they have this virus and, if so, quarantine and enable public health workers to check out their contacts. I’m guessing, from what you said, that testing has been happening a lot less in urban communities that are heavily populated by African Americans and that further propagates the spread of the disease. Am I right?

Pérez-Stable: So far, most testing has been conducted on the basis of symptoms. So, if you have enough symptoms that you may potentially need to be hospitalized, then you get tested. Also, if you’re a healthcare worker who had contact with a COVID-19 patient, you might be tested, or if there’s someone you’ve been very close to that was infected, you may be tested. So, I don’t think so much it’s a matter of disproportionate access to testing by one group or another, as much as that the overall triage and selection criteria for testing have been rather narrow. Up until now, it has not been a simple process to get tested for COVID-19. As we scale up and get better point-of-care tests and much easier access to getting tested, I think you’ll see dissemination across the board.

Collins: It’s interesting we’re talking about this, because this is an area that Congress recently came to NIH and said, “We want you to do something about the testing by encouraging more technology, particularly technology that can be distributed to the point-of-care, and that is out in the community.”

Everyone wants a test that gives you a quick turnaround, an answer within an hour, instead of maybe a day or two. A big part of what NIH is trying to do is to make sure that if we’re going to develop these new testing technologies, they get deployed in places that otherwise might not have much access to testing—maybe by working through the community health centers. So, we’re hoping we might be able to make a contribution there.

Pérez-Stable: The economic factors in this pandemic are also huge. A significant proportion of the population that we’re referring to—the disparity population, the minorities, the poor people—work in service jobs where they’re on the front line. They were the restaurant servers and people in the kitchen, they’re still the bus drivers and the Uber drivers, and those who are working in pharmacies and supermarkets.

On the one hand, they are at higher risk for getting infected because they’re in more contact with people. On the other hand, they’re really dependent on this income to maintain their household. So, if they test positive or get exposed to COVID-19, we really do have a challenge when we ask them to quarantine and not go to work. They’re not in a position where they have sick leave, and they may be putting themselves at risk for being laid off.

Collins: Eliseo, you’ve been studying health disparities pretty much your whole research career. You come from a community where health disparities are a reality, having been born in Cuba and being part of the Latino community. Did you expect that COVID-19 would be this dramatic in the ways in which it has so disproportionately affected certain groups?

Pérez-Stable: I can’t say that I did. My first thought as a physician was to ask: “Is there any reason to think that an infectious agent like COVID-19 would disproportionally infect or impact any population?” My gut answer was “No.” Infectious diseases usually seem to affect all people; sort of equal opportunity invaders. There are some data that would say that influenza and pneumonia are not any worse among African Americans or Latinos than among whites. There are some slight differences in some regions, but not much.

Yet I know this a question that NIH-funded scientists are interested in addressing. We need to make sure that there aren’t any particular susceptibility factors, possibly related to genetics or the lung epithelium, that lead to such different COVID-19 outcomes in different individuals. Clearly, something must be going on, but we don’t know what that is. Maybe one of those factors tracks through race or ethnicity because of what those social constructs represent.

I recently listened to a presentation by Rob Califf, former FDA Commissioner, who spoke about how the pandemic has created a spotlight on our disparities-creating system. I think much of the time this disparities-creating system is in the background; it doesn’t really affect most people’s daily lives. Now, we’re suddenly hit with a bucket of cold water called COVID-19, and we’re saying what is going on and what can we do about it to make a difference. I hope that, once we begin to emerge from this acute crisis, we take the opportunity to address these fundamental issues in our society.

Collins: Indeed. Let’s talk about what you’re doing at NIMHD to support research to try to dig into both the causes of health disparities and the interventions that might help.

Pérez-Stable: Prompted by your motivation, we started talking about how minority health and health disparities research could respond to this pandemic. In the short-term, we thought along the lines of how can we communicate mitigation interventions, such as physical distancing, in a more effective way to our communities? We also asked what we could do to enhance access to healthcare for our populations, both to manage chronic conditions and for diagnosis and treatment of acute COVID-19.

We also considered in the mid- and long-term effects of economic disruption—this surge of unemployment, loss of jobs, loss of insurance, loss of income—on people’s health. Worries include excess use of alcohol and other substances, and worsening of mental and emotional well-being, particularly due to severe depression and chronic mental disorders not being well controlled. Intimate partner violence has already been noted to increase in some countries, including France, Spain, and the United States, that have gone on physical distancing interventions. Similarly, child abuse can be exacerbated under these circumstances. Just think of 24/7 togetherness as a test of how people can hold it together all the time. I think that that can bring out some fragility. So, interventions to address these, that really activate our community networks and community-based organizations, are real strengths. They build on the resilience of the community to highlight how we can get through this difficult period of time.

I feel optimistic that science will bring answers, in the form of both therapies and vaccines. But in the meantime, we have a way to go and we a lot to do.  

Collins: You mentioned the promise of vaccines. The NIH is working intensively on this, particularly through a partnership called ACTIV, Accelerating Covid-19 Therapeutic Interventions and Vaccines. We hope that in several more months, we’ll be in a position to begin testing these vaccines on a large scale, after having some assurances about their safety and efficacy. From our conversation, it sounds like we should be trying to get early access to those vaccines to people at highest risk, including those in communities with the heaviest burden. But how will that be received? There hasn’t always been an easy relationship between researchers, particularly government researchers, and the African-American community.

Pérez-Stable: I think we have learned from our historical experiences that mistrust of the system is real. To try to pretend that it isn’t there is a big mistake. Address these concerns upfront, obtain support from thought leaders in the community, and really work hard to be inclusive. In addition to vaccines, we need participation in any clinical trials that are coming up for therapeutics.

We also need research on how optimally to communicate this with all the different segments of the population. This includes not just explaining what it means to be eligible for vaccine trials or therapeutic trials, but also discussing the consequences of, say, getting tested, whether it be a viral or antibody test. What does the information mean for them?  

Most people just want to know “Am I clear of the virus or not?” That certainly could be part of the answer, but many may require more nuanced responses. Then there’s behavior. If I’m infected and I recover, am I safe to go back out and do things that other people shouldn’t do? We’d love to be able to inform the population about that. But, as you know, we don’t really have the answers to that just yet.

Collins: Good points. How do we make sure, when we’re trying to reach out to populations that have shouldered such a heavy burden, that we’re actually providing information in a fashion that is readily understood?

Pérez-Stable:  One thing to keep in mind is the issue of language. About 5 to 10 percent of U.S. adults don’t speak English well. So, we really have to address the language barrier. I also want to highlight the challenge that some tribal nations are facing. Navajo country has had particular challenges with COVID-19 infections in a setting of minimal medical infrastructure. In fact, there are communities that have to go and get their water for the day at a distant site, so they don’t have modern plumbing. How can we recommend frequent hand washing to someone who doesn’t even have running water at home? These are just a few examples of the diversity of our country that need to be addressed as we deal with this pandemic.

Collins:  Eliseo, you’ve given us a lot to think about in an obviously very serious situation. Anything you’d like to add?

Pérez-Stable:  In analyzing health outcomes, researchers often think about responses related to a metabolic pathway or to a gene or to a response to a particular drug. But as we use the power of science to understand and contain the COVID-19 pandemic, I’d like to re-emphasize the importance of considering race, ethnicity, socioeconomic status, the built environment, the social environment, and systems. Much of the time these factors may only play secondary roles, but, as in all science related to humans, I think they have to be considered. This experience should be a lesson for us to learn more about that.

Collins: Thank you for those wonderful, inspiring words. It was good to have this conversation, Eliseo, because we are the National Institutes of Health, but that has to be health for everybody. With COVID-19, we have an example where that has not turned out to be the case. We need to do everything we can going forward to identify ways to change that.

Reference:

[1] Assessing Differential Impacts of COVID-19 on Black Communities. Millet GA et al. MedRxiv. Preprint posted on May 8, 2020.

Links:

Video: Francis Collins and Eliseo Pérez-Stable on COVID-19 Health Disparities (NIH)

Coronavirus (COVID-19) (NIH)

Director’s Corner (National Institute on Minority Health and Disparities/NIH)

COVID-19 and Racial/Ethnic Disparities. Webb Hooper M, Nápoles AM, Pérez-Stable EJ.JAMA. 2020 May 11.

amfAR Study Shows Disproportionate Impact of COVID-19 on Black Americans, amfAR News Release, May 5, 2020.



NIMHD Turns 10

Posted on by

NIMHD Anniversary Symposium
Happy 10th anniversary to NIH’s National Institute on Minority Health and Health Disparities (NIMHD). To mark the occasion, the NIMHD held an informative anniversary scientific symposium on March 3, 2020 at NIH that focused on “Innovations to Promote the Health Equity Agenda.” It was my pleasure to take part in the opening session, where I had a chance to pose for this photo with my colleague and NIMHD Director Eliseo Pérez-Stable. Over the past 30 years, NIMHD and its predecessors, along with their partners and collaborators, have proven that health disparities are real. Everyone deserves to live a healthy life, and health disparities challenge our American sense of fairness. Within the next 30 years, a majority of our nation’s population is projected to be non-white. With this coming demographic shift, it’s more important now than ever for researchers to study minority health and health disparities to understand the health of all people. Credit: NIH.


Insurance Status Helps Explain Racial Disparities in Cancer Diagnosis

Posted on by

Diverse human hands
Credit: iStock/jmangostock

Women have the best odds of surviving breast cancer if their disease is caught at an early stage, when treatments are most likely to succeed. Major strides have been made in the early detection of breast cancer in recent years. But not all populations have benefited equally, with racial and ethnic minorities still more likely to be diagnosed with later-stage breast cancer than non-Hispanic whites. Given that recent observance of Martin Luther King Day, I thought that it would be particularly appropriate to address a leading example of health disparities.

A new NIH-funded study of more than 175,000 U.S. women diagnosed with breast cancer from 2010-2016 has found that nearly half of the troubling disparity in breast cancer detection can be traced to lack of adequate health insurance. The findings suggest that improving insurance coverage may help to increase early detection and thereby reduce the disproportionate number of breast cancer deaths among minority women.

Naomi Ko, Boston University School of Medicine, has had a long interest in understanding the cancer disparities she witnesses first-hand in her work as a medical oncologist. For the study published in JAMA Oncology, she teamed up with epidemiologist Gregory Calip, University of Illinois Cancer Center, Chicago [1]. Their goal was to get beyond documenting disparities in breast cancer and take advantage of available data to begin to get at why such disparities exist and what to do about them.

Disparities in breast cancer outcomes surely stem from a complicated mix of factors, including socioeconomic factors, culture, diet, stress, environment, and biology. Ko and Calip focused their attention on insurance, thinking of it as a factor that society can collectively modify.

Many earlier studies had shown a link between insurance and cancer outcomes [2]. It also stood to reason that broad differences among racial and ethnic minorities in their access to adequate insurance might drive some of the observed cancer disparities. But, Ko and Calip asked, just how big a factor was it?

To find out, they looked to the NIH’s Surveillance Epidemiology, and End Results (SEER) Program, run by the National Cancer Institute. The SEER Program is an authoritative source of information on cancer incidence and survival in the United States.

The researchers focused their attention on 177,075 women of various races and ethnicities, ages 40 to 64. All had been diagnosed with invasive stage I to III breast cancer between 2010 and 2016.

The researchers found that a higher proportion of women receiving Medicaid or who were uninsured received a diagnosis of advanced stage III breast cancer compared with women with health insurance. Black, American Indian, Alaskan Native, and Hispanic women also had higher odds of receiving a late-stage diagnosis.

Overall, their sophisticated statistical analyses traced up to 47 percent of the racial/ethnic differences in the risk of locally advanced disease to differences in health insurance. Such late-stage diagnoses and the more extensive treatment regimens that go with them are clearly devastating for women with breast cancer and their families. But, the researchers note, they’re also costly for society, due to lost productivity and escalating treatment costs by stage of breast cancer.

These researchers surely aren’t alone in recognizing the benefit of early detection. Last week, an independent panel convened by NIH called for enhanced research to assess and explore how to reduce health disparities that lead to unequal access to health care and clinical services that help prevent disease.

References:

[1] Association of Insurance Status and Racial Disparities With the Detection of Early-Stage Breast Cancer. Ko NY, Hong S, Winn RA, Calip GS. JAMA Oncol. 2020 Jan 9.

[2] The relation between health insurance coverage and clinical outcomes among women with breast cancer. Ayanian JZ, Kohler BA, Abe T, Epstein AM. N Engl J Med. 1993 Jul 29;329(5):326-31.

[3] Cancer Stat Facts: Female Breast Cancer. National Cancer Institute Surveillance, Epidemiology, and End Results Program.

Links:

Cancer Disparities (National Cancer Institute/NIH)

Breast Cancer (National Cancer Institute/NIH)

Naomi Ko (Boston University)

Gregory Calip (University of Illinois Cancer Center, Chicago)

NIH Support: National Center for Advancing Translational Sciences; National Cancer Institute; National Institute on Minority Health and Health Disparities


Next Page