Missing Genes Point to Possible Drug Targets

Human knockout projectEvery person’s genetic blueprint, or genome, is unique because of variations that occasionally occur in our DNA sequences. Most of those are passed on to us from our parents. But not all variations are inherited—each of us carries 60 to 100 “new mutations” that happened for the first time in us. Some of those variations can knock out the function of a gene in ways that lead to disease or other serious health problems, particularly in people unlucky enough to have two malfunctioning copies of the same gene. Recently, scientists have begun to identify rare individuals who have loss-of-function variations that actually seem to improve their health—extraordinary discoveries that may help us understand how genes work as well as yield promising new drug targets that may benefit everyone.

In a study published in the journal Nature, a team partially funded by NIH sequenced all 18,000 protein-coding genes in more than 10,500 adults living in Pakistan [1]. After finding that more than 17 percent of the participants had at least one gene completely “knocked out,” researchers could set about analyzing what consequences—good, bad, or neutral—those loss-of-function variations had on their health and well-being.

Continue reading

Cool Videos: Heart Attack

Blood Clots Video screenshot

Up next in our scientific film fest is an original music video, straight from the Big Apple. Created by researchers at The Rockefeller University, this song-and-dance routine provides an entertaining—and informative—look at how blood clots form, their role in causing heart attacks, and what approaches are being tried to break up these clots.

Before (or after!) you hit “play,” it might help to take a few moments to review the scientists’ description of their efforts: the key to saving the lives of heart attack victims lies in the molecules that control how blood vessels become clogged. This molecular biomedicine music video explains how ischemic injury can be prevented shortly after heart attack symptoms begin: clot blocking. The science is the collaborative work of Dr. Barry Coller of Rockefeller, Dr. Craig Thomas and his colleagues at the National Center for Advancing Translational Sciences (NCATS), and Dr. Marta Filizola and her Mount Sinai colleagues.

Links:

Laboratory of Blood and Vascular Biology, The Rockefeller University

Filizola Laboratory, Icahn School of Medicine at Mount Sinai

Center for Clinical and Translational Science, The Rockefeller University

Clinical and Translational Science Awards (NCATS/NIH)

NIH Common Fund Video Competition

NIH support: Common Fund; National Center for Advancing Translational Sciences