Skip to main content

older people

COVID-19 Vaccine Appears Well-Tolerated and Effective in Developing Antibodies in Small Study of Older Adults

Posted on by

Bandage after vaccine
Credit: iStock/BackyardProduction

It’s been truly breathtaking to watch the progress being made on a daily basis to develop safe and effective vaccines for SARS-CoV-2, the novel coronavirus that causes COVID-19. Indeed, months sooner than has ever been possible for a newly emerging infection, several promising vaccines are already working their way through Phase 3 studies, the final stage of clinical evaluation. I remain optimistic that we will have one or more vaccines that prove to be safe and effective by January 2021.

But, as encouraging as the early data have been, uncertainty has remained over whether vaccines that appear safe and effective in developing antibodies in younger adults will work as well in older people, too. It’s a critical issue given that older individuals also are at greater risk for severe or life-threatening illness if they do get sick from COVID-19.

So, I’m pleased to highlight some recent findings, published in the New England Journal of Medicine [1], from an early Phase 1 clinical trial that was expanded to include 40 adults over age 55. While we eagerly await the results of ongoing and larger studies, these early data suggest that an innovative COVID-19 vaccine co-developed by NIH’s Vaccine Research Center (VRC), in partnership with Moderna Inc., Cambridge, MA, is both well tolerated and effective in generating a strong immune response when given to adults of any age.

The centerpiece of the vaccine in question, known as mRNA-1273, is a small, non-infectious snippet of messenger RNA (mRNA). When this mRNA is injected into muscle, a person’s own body will begin to make the key viral spike protein. As the immune system detects this spike protein, it spurs the production of antibodies that may help to fend off the novel SARS-CoV-2.

Earlier findings from the NIH-supported phase 1 human clinical trial found mRNA-1273 was safe and effective in generating a vigorous immune response in people ages 18 to 55, when delivered in two injections about a month apart. Based on those findings, a large Phase 3 clinical trial is currently enrolling 30,000 volunteers, with results expected in the next few weeks [2]. But, given that immune response to many other vaccines tends to grow weaker with age, how well would this new COVID-19 vaccine work for older individuals?

To find out, a team at Kaiser Permanente Washington Health Research Institute, Seattle, and Emory University School of Medicine, Atlanta, expanded the initial Phase 1 trial to include 20 healthy volunteers ages 56 to 70 and another 20 healthy volunteers ages 71 and older. Ten volunteers in each of the two older age groups received a lower dose of the vaccine (25 micrograms) in two injections given about a month apart. The other 10 in each age group received a higher dose (100 micrograms), given on the same schedule.

Here’s what they found:

• No volunteers suffered serious adverse events. The most common adverse events were mild-to-moderate in severity and included headache, fatigue, muscle aches, chills and pain at the injection site. Those symptoms occurred most often after the second dose and in individuals receiving the higher dose of 100 micrograms.

• Volunteers showed a rapid production of protective antibodies against the spike protein following immunization. After the second injection, all participants showed a strong immune response, with production of robust binding and neutralizing antibodies against SARS-CoV-2.

• The higher dose of 100 micrograms safely produced a stronger immune response compared to the lower dose, supporting its use in larger clinical studies.

• Most importantly, the immune response observed in these older individuals was comparable to that seen previously in younger adults.

The researchers will continue to follow the volunteer trial participants of all ages for about a year to monitor the vaccine’s longer-term effects. But these findings provided support for continued testing of this promising vaccine in older adults in the ongoing Phase 3 clinical trial.

There are currently four SARS-CoV-2 vaccines in phase 3 clinical trials in the United States (though two are currently on hold). Trials of two more vaccines are expected start in the next month or two.

It is not known whether all of these vaccines will have the same vigorous immune response in older individuals that has been demonstrated for this one. But if more than one of these vaccines turns out to be safe and effective, it will be important to know about the response in various populations, so that distribution to high-risk groups can be planned accordingly.

References:

[1] Safety and immunogenicity of SARS-CoV-2 mRNA-1273 vaccine in older adults. Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, Chappell JD, Denison MR, Stevens LJ, Pruijssers AJ, McDermott AB, Flach B, Lin BC, Doria-Rose NA, O’Dell S, Schmidt SD, Corbett KS, Swanson PA 2nd, Padilla M, Neuzil KM, Bennett H, Leav B, Makowski M, Albert J, Cross K, Edara VV, Floyd K, Suthar MS, Martinez DR, Baric R, Buchanan W, Luke CJ, Phadke VK, Rostad CA, Ledgerwood JE, Graham BS, Beigel JH; mRNA-1273 Study Group. N Engl J Med. 2020 Sep 29.

[2] “Phase 3 clinical trial of investigational vaccine for COVID-19 begins.” National Institutes of Heath. July 27, 2020

Links:

Coronavirus (COVID-19) (NIH)

COVID-19 Prevention Network (National Institute of Allergy and Infectious Diseases/NIH)

Dale and Betty Bumpers Vaccine Research Center (National Institute of Allergy and Infectious Diseases/NIH)

Moderna, Inc. (Cambridge, MA)

Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 Infection (COVID-19) (ClinicalTrials.gov)

NIH Support: National Institute of Allergy and Infectious Diseases


Largest-Ever Alzheimer’s Gene Study Brings New Answers

Posted on by

Alzheimer's Risk Genes

Predicting whether someone will get Alzheimer’s disease (AD) late in life, and how to use that information for prevention, has been an intense focus of biomedical research. The goal of this work is to learn not only about the genes involved in AD, but how they work together and with other complex biological, environmental, and lifestyle factors to drive this devastating neurological disease.

It’s good news to be able to report that an international team of researchers, partly funded by NIH, has made more progress in explaining the genetic component of AD. Their analysis, involving data from more than 35,000 individuals with late-onset AD, has identified variants in five new genes that put people at greater risk of AD [1]. It also points to molecular pathways involved in AD as possible avenues for prevention, and offers further confirmation of 20 other genes that had been implicated previously in AD.

The results of this largest-ever genomic study of AD suggests key roles for genes involved in the processing of beta-amyloid peptides, which form plaques in the brain recognized as an important early indicator of AD. They also offer the first evidence for a genetic link to proteins that bind tau, the protein responsible for telltale tangles in the AD brain that track closely with a person’s cognitive decline.

The new findings are the latest from the International Genomics of Alzheimer’s Project (IGAP) consortium, led by a large, collaborative team including Brian Kunkle and Margaret Pericak-Vance, University of Miami Miller School of Medicine, Miami, FL. The effort, spanning four consortia focused on AD in the United States and Europe, was launched in 2011 with the aim of discovering and mapping all the genes that contribute to AD.

An earlier IGAP study including about 25,500 people with late-onset AD identified 20 common gene variants that influence a person’s risk for developing AD late in life [2]. While that was terrific progress to be sure, the analysis also showed that those gene variants could explain only a third of the genetic component of AD. It was clear more genes with ties to AD were yet to be found.

So, in the study reported in Nature Genetics, the researchers expanded the search. While so-called genome-wide association studies (GWAS) are generally useful in identifying gene variants that turn up often in association with particular diseases or other traits, the ones that arise more rarely require much larger sample sizes to find.

To increase their odds of finding additional variants, the researchers analyzed genomic data for more than 94,000 individuals, including more than 35,000 with a diagnosis of late-onset AD and another 60,000 older people without AD. Their search led them to variants in five additional genes, named IQCK, ACE, ADAM10, ADAMTS1, and WWOX, associated with late-onset AD that hadn’t turned up in the previous study.

Further analysis of those genes supports a view of AD in which groups of genes work together to influence risk and disease progression. In addition to some genes influencing the processing of beta-amyloid peptides and accumulation of tau proteins, others appear to contribute to AD via certain aspects of the immune system and lipid metabolism.

Each of these newly discovered variants contributes only a small amount of increased risk, and therefore probably have limited value in predicting an average person’s risk of developing AD later in life. But they are invaluable when it comes to advancing our understanding of AD’s biological underpinnings and pointing the way to potentially new treatment approaches. For instance, these new data highlight intriguing similarities between early-onset and late-onset AD, suggesting that treatments developed for people with the early-onset form also might prove beneficial for people with the more common late-onset disease.

It’s worth noting that the new findings continue to suggest that the search is not yet over—many more as-yet undiscovered rare variants likely play a role in AD. The search for answers to AD and so many other complex health conditions—assisted through collaborative data sharing efforts such as this one—continues at an accelerating pace.

References:

[1] Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Kunkle BW, Grenier-Boley B, Sims R, Bis JC, et. al. Nat Genet. 2019 Mar;51(3):414-430.

[2] Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, DeStafano AL, Bis JC, et al. Nat Genet. 2013 Dec;45(12):1452-8.

Links:

Alzheimer’s Disease Genetics Fact Sheet (National Institute on Aging/NIH)

Genome-Wide Association Studies (NIH)

Margaret Pericak-Vance (University of Miami Health System, FL)

NIH Support: National Institute on Aging; National Heart, Lung, and Blood Institute; National Human Genome Research Institute; National Institute of Allergy and Infectious Diseases; Eunice Kennedy Shriver National Institute of Child Health and Human Development; National Institute of Diabetes and Digestive and Kidney Disease; National Institute of Neurological Disorders and Stroke


An Aspirin a Day for Older People Doesn’t Prolong Healthy Lifespan

Posted on by

Hands holding a pill and a glass of water

Credit: iStock/thodonal

Many older people who’ve survived a heart attack or stroke take low-dose aspirin every day to help prevent further cardiovascular problems [1]. There is compelling evidence that this works. But should perfectly healthy older folks follow suit?

Most of us would have guessed “yes”—but the answer appears to be “no” when you consider the latest scientific evidence.  Recently, a large, international study of older people without a history of cardiovascular disease found that those who took a low-dose aspirin daily over more than 4 years weren’t any healthier than those who didn’t. What’s more, there were some unexpected indications that low-dose aspirin might even boost the risk of death.