Skip to main content

Moderna

Tracking the Evolution of a ‘Variant of Concern’ in Brazil

Posted on by

P.1 Variant of SARS-CoV-2 in the center of standard SARS-CoV-2. Arrows move out from the variant

By last October, about three out of every four residents of Manaus, Brazil already had been infected with SARS-CoV-2, the virus that causes COVID-19 [1]. And yet, despite hopes of achieving “herd immunity” in this city of 2.2 million in the Amazon region, the virus came roaring back in late 2020 and early 2021 to cause a second wave of illness and death [2]. How is this possible?

The answer offers a lesson in viral evolution, especially when an infectious virus such as SARS-CoV-2 replicates and spreads through a population largely unchecked. In a recent study in the journal Science, researchers tied the city’s resurgence of SARS-CoV-2 to the emergence and rapid spread of a new SARS-CoV-2 “variant of concern” known as P.1 [3]. This variant carries a unique constellation of mutations that allow it not only to sneak past the human immune system and re-infect people, but also to be about twice as transmissible as earlier variants.

To understand how this is possible, consider that each time the coronavirus SARS-CoV-2 makes copies of itself in an infected person, there’s a chance a mistake will be made. Each mistake can produce a new variant that may go on to make more copies of itself. In most cases, those random errors are of little to no consequence. This is evolution in action.

But sometimes a spelling change can occur that benefits the virus. In the special case of patients with suppressed immune systems, the virus can have ample opportunity to accrue an unusually high number of mutations. Variants carrying beneficial mutations can make more copies of themselves than other variants, allowing them to build their numbers and spread to cause more infection.

At this advanced stage of the COVID-19 pandemic, such rapidly spreading new variants remain cause for serious concern. That includes variants such as B.1.351, which originated in South Africa; B.1.1.7 which emerged in the United Kingdom; and now P.1 from Manaus, Brazil.

In the new study, Nuno Faria and Samir Bhatt, Imperial College London, U.K., and Ester Cerdeira Sabino, Universidade de Sao Paulo, Brazil, and their colleagues sequenced SARS-CoV-2 genomes from 184 patient samples collected in Manaus in November and December 2020. The research was conducted under the auspices of the Brazil-UK Centre for Arbovirus Discovery, Diagnosis, Genomics and Epidemiology (CADDE), a project focused on viral genomics and epidemiology for public health.

Those genomic data revealed the P.1 variant had acquired 17 new mutations. Ten were in the spike protein, which is the segment of the virus that binds onto human cells and the target of current COVID-19 vaccines. In fact, the new work reveals that three of these spike protein mutations make it easier for the P.1 spike to bind the human ACE2 receptor, which is SARS-CoV-2’s preferred entry point.

The first P.1 variant case was detected by genomic surveillance on December 6, 2020, after which it spread rapidly. Through further evolutionary analysis, the team estimates that P.1 must have emerged, undetected for a brief time, in mid-November 2020.

To understand better how the P.1 variant led to such an explosion of new COVID-19 cases, the researchers developed a mathematical model that integrated the genomic data with mortality data. The model suggests that P.1 may be 1.7 to 2.4 times more transmissible than earlier variants. They also estimate that a person previously infected with a variant other than P.1 will have only 54 percent to 79 percent protection against a subsequent infection with P.1.

The researchers also observed an increase in mortality following the emergence of the P.1 variant. However, it’s not yet clear if that’s an indication P.1 is inherently more deadly than earlier variants. It’s possible the increased mortality is related primarily to the extra stress on the healthcare system in Manaus from treating so many people with COVID-19.

These findings are yet another reminder of the importance of genomic surveillance and international data sharing for detecting and characterizing emerging SARS-CoV-2 variants quickly. It’s worth noting that at about the same time this variant was detected in Brazil, it also was reported in four individuals who had traveled to Brazil from Japan. The P.1 variant continues to spread rapidly across Brazil. It has also been detected in more than 37 countries [4], including the United States, where it now accounts for more than 1 percent of new cases [5].

No doubt you are wondering what this means for vaccines, such as the Pfizer and Moderna mRNA vaccines, that have been used to immunize (at least one dose) over 140 million people in the United States. Here the news is encouraging. Serum from individuals who received the Pfizer vaccine had titers of neutralizing antibodies that were only slightly reduced for P.1 compared to the original SARS-CoV-2 virus [6]. Therefore, the vaccine is predicted to be highly protective. This is another example of a vaccine providing more protection than a natural infection.

The United States has made truly remarkable progress in combating COVID-19, but we must heed this lesson from Manaus: this terrible pandemic isn’t over just yet. While the P.1 variant remains at low levels here for now, the “U.K. variant” B.1.1.7 continues to spread rapidly and now is the most prevalent variant circulating in the U.S., accounting for 44 percent of new cases [6]. Fortunately, the mRNA vaccines also work well against B.1.1.7.

We must continue to do absolutely everything possible, individually and collectively, to prevent these new SARS-CoV-2 variants from slowing or even canceling the progress made over the last year. We need to remain vigilant for just a while longer, while encouraging our friends, neighbors, and loved ones to get vaccinated.

References:

[1] Three-quarters attack rate of SARS-CoV-2 in the Brazilian Amazon during a largely unmitigated epidemic. Buss, L. F., C. A. Prete, Jr., C. M. M. Abrahim, A. C. Dye, V. H. Nascimento, N. R. Faria and E. C. Sabino et al. (2021). Science 371(6526): 288-292.

[2] Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Sabino EC, Buss LF, Carvalho MPS, Prete Jr CCA, Crispim MAE, Fraiji NA, Pereira RHM, Paraga KV, Peixoto PS, Kraemer MUG, Oikawa MJ, Salomon T, Cucunuba ZM, Castro MC, Santos AAAS, Nascimento VH, Pereira HS, Ferguson NM, Pybus OG, Kucharski A, Busch MP, Dye C, Faria NR Lancet. 2021 Feb 6;397(10273):452-455.

[3] Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil. Faria NR, Mellan TA, Whittaker C, Claro IM, Fraiji NA, Carvalho MDPSS, Pybus OG, Flaxman S, Bhatt S, Sabino EC et al. Science. 2021 Apr 14:eabh2644.

[4] GRINCH Global Report Investigating novel coronavirus haplotypes. PANGO Lineages.

[5] COVID Data Tracker. Variant Proportions. Centers for Disease Control and Prevention.

[6] Antibody evasion by the P.1 strain of SARS-CoV-2. Dejnirattisai W, Zhou D, Supasa P, Liu C, Mongkolsapaya J, Ren J, Stuart DI, Screaton GR, et al. Cell. 2021 Mar 30:S0092-8674(21)00428-1.

Links:

COVID-19 Research (NIH)

Brazil-UK Centre for Arbovirus Discovery, Diagnosis, Genomics and Epidemiology (CADDE)

Nuno Faria (Imperial College, London, U.K.)

Samir Bhatt (Imperial College)

Ester Cerdeira Sabino (Universidade de Sao Paulo, Brazil)

NIH Support: National Institute of Allergy and Infectious Diseases


Is One Vaccine Dose Enough After COVID-19 Infection?

Posted on by

COVID-19 vaccination record card
Credit: iStock/Bill Oxford

For the millions of Americans now eligible to receive the Pfizer or Moderna COVID-19 vaccines, it’s recommended that everyone get two shots. The first dose of these mRNA vaccines trains the immune system to recognize and attack the spike protein on the surface of SARS-CoV-2, the virus that causes COVID-19. The second dose, administered a few weeks later, boosts antibody levels to afford even better protection. People who’ve recovered from COVID-19 also should definitely get vaccinated to maximize protection against possible re-infection. But, because they already have some natural immunity, would just one shot do the trick? Or do they still need two?

A small, NIH-supported study, published as a pre-print on medRxiv, offers some early data on this important question [1]. The findings show that immune response to the first vaccine dose in a person who’s already had COVID-19 is equal to, or in some cases better, than the response to the second dose in a person who hasn’t had COVID-19. While much more research is needed—and I am definitely not suggesting a change in the current recommendations right now—the results raise the possibility that one dose might be enough for someone who’s been infected with SARS-CoV-2 and already generated antibodies against the virus.

These findings come from a research team led by Florian Krammer and Viviana Simon, Icahn School of Medicine at Mount Sinai, New York. The researchers reasoned that for folks whose bodies have already produced antibodies following a COVID-19 infection, the first shot might act similarly to the second one in someone who hadn’t had the virus before. In fact, there was some anecdotal evidence suggesting that previously infected people were experiencing stronger evidence of an active immune response (sore arm, fever, chills, fatigue) than never-infected individuals after getting their first shots.

What did the antibodies show? To find out, the researchers enlisted the help of 109 people who’d received their first dose of mRNA vaccines made by either Pfizer or Moderna. They found that those who’d never been infected by SARS-CoV-2 developed antibodies at low levels within 9 to 12 days of receiving their first dose of vaccine.

But in 41 people who tested positive for SARS-CoV-2 antibodies prior to getting the first shot, the immune response looked strikingly different. They generated high levels of antibodies within just a few days of getting the vaccine. Compared across different time intervals, previously infected people had immune responses 10 to 20 times that observed in uninfected people. Following their second vaccine dose, it was roughly the same story. Antibody levels in those with a prior infection were about 10 times greater than the others.

Both vaccines were generally well tolerated. But, because their immune systems were already in high gear, people who were previously infected tended to have more symptoms following their first shot, such as pain and swelling at the injection site. They also were more likely to report other less common symptoms, including fatigue, fever, chills, headache, muscle aches, and joint pain.

Though sometimes it may not seem like it, COVID-19 and the mRNA vaccines are still relatively new. Researchers haven’t yet been able to study how long these vaccines confer immunity to the disease, which has now claimed the lives of more than 500,000 Americans. But these findings do suggest that a single dose of the Pfizer or Moderna vaccines can produce a rapid and strong immune response in people who’ve already recovered from COVID-19.

If other studies support these results, the U.S. Food and Drug Administration (FDA) might decide to consider whether one dose is enough for people who’ve had a prior COVID-19 infection. Such a policy is already under consideration in France and, if implemented, would help to extend vaccine supply and get more people vaccinated sooner. But any serious consideration of this option will require more data. It will also be up to the expert advisors at FDA and Centers for Disease Control and Prevention (CDC) to decide.

For now, the most important thing all of us can all do to get this terrible pandemic under control is to follow the 3 W’s—wear our masks, wash our hands, watch our distance from others—and roll up our sleeves for the vaccine as soon as it’s available to us.

Reference:

[1] Robust spike antibody responses and increased reactogenicity in seropositive individuals after a single dose of SARS-CoV-2 mRNA vaccine. Krammer F et al. medRxiv. 2021 Feb 1.

Links:

COVID-19 Research (NIH)

Krammer Lab (Icahn School of Medicine at Mount Sinai, New York, NY)

Simon Lab (Icahn School of Medicine at Mount Sinai)

NIH Support: National Institute of Allergy and Infectious Diseases


A Double Thumbs Up

Posted on by

VP Visit
It was an honor welcoming the 49th Vice President of the United States Kamala Harris to NIH on January 26, 2021. She received her second dose of the Moderna COVID-19 vaccine at the NIH Clinical Center in a livestreamed event. All was a thumbs up afterwards. The NIH community thanks Vice President Harris for her kind words and looks forward to her future visits to the NIH campus. Credit: NIH


Following COVID-19 Vaccines Across the United States

Posted on by

Vaccine Tracker

Recently, there is a new and very hopeful COVID-19 number for everyone to track: the total number of vaccine doses that have been administered in the United States. If 80 percent of Americans roll up their sleeves in the coming months and accept COVID-19 vaccinations, we can greatly slow the spread of the novel coronavirus in our communities and bring this horrible pandemic to an end in 2021.

So far, more than 20 million people in our country have received one or two doses of either the Pfizer or Moderna vaccine. While this number is lower than initially projected for a variety of logistical reasons, we’re already seeing improvements in the distribution system that has made it possible to get close to 1 million doses administered per day.

If you want to keep track of the vaccine progress in your state over the coming weeks, it’s now pretty easy to do online. A fine resource is the vaccine information on the Centers for Disease Control and Prevention (CDC) COVID Data Tracker. It offers an interactive state-by-state map, as well as data on vaccinations in long-term care facilities. Keep in mind that there’s a delay of three to five days in reporting actual vaccinations from the states.

There’s also a lot of useful information on the Johns Hopkins Coronavirus Resource Center’s Vaccine Tracker. Posting the daily updates is a team, led by William Moss, that draws on the expertise of data scientists, analysts, programmers, and researchers. The Hopkins team gathers its vaccination data from each state’s official dashboard, webpages, press releases, or wherever cumulative numbers are reported. Not all states publish the same vaccine information, and that’s what can make the Vaccine Tracker so challenging to compile.

The Hopkins team now presents on its homepage the top 10 U. S. states and territories to vaccinate fully the highest percentage of their residents. With another click, there’s also a full rundown of vaccine administration by state and territory, plus the District of Columbia. The site also links to lots of other information about COVID-19—including cases, testing, contact tracing, and an interactive tool about vaccine development.

In uncertain times, knowledge can be a source of comfort. That’s what makes these interactive COVID-19 resources so helpful and empowering. They show that, with time, safe and effective COVID-19 vaccines will indeed coming to everyone. I hope that you will accept your vaccine, like I did when given the opportunity. However, until we get to the point where most Americans are immunized, we must stay vigilant and keep up our tried-and-true public health measures such as wearing masks, limiting physical interactions (especially indoors), and washing our hands.

Links:

COVID-19 Research (NIH)

CDC COVID Data Tracker (Centers for Disease Control and Prevention, Atlanta)

Coronavirus Resource Center (Johns Hopkins University School of Medicine)

William Moss (Johns Hopkins University, Baltimore)

International Vaccine Access Center (Johns Hopkins Bloomberg School of Public Health, Baltimore)



Getting My COVID-19 Booster Shot

Posted on by

Man receiving vaccine shot
I was grateful to receive my second, or “booster,” shot of the Moderna COVID-19 vaccine at the NIH Clinical Center on Jan. 19, 2021. As NIH Director, I’ve closely followed the development of this and other FDA-authorized vaccines, which have been rigorously tested for safety and efficacy. To protect both yourself and others, I encourage you to get vaccinated when the opportunity arises. Credit: NIH

Next Page