Skip to main content

SARS

Study Finds People Have Short-Lived Immunity to Seasonal Coronaviruses

Posted on by

Microscopic view of Coronavirus
Caption: Artistic rendering of coronaviruses. Credit: iStock/Naeblys

A key metric in seeking to end the COVID-19 pandemic is the likely duration of acquired immunity, which is how long people infected with SARS-CoV-2, the novel coronavirus that causes COVID-19, are protected against reinfection. The hope is that acquired immunity from natural infection—or from vaccines—will be long-lasting, but data to confirm that’s indeed the case won’t be in for many months or years.

In the meantime, a useful place to look for clues is in long-term data on reinfections with other seasonal coronaviruses. Could the behavior of less life-threatening members of the coronavirus family give us some insight into what to expect from SARS-CoV-2?

A new study, published in the journal Nature Medicine, has taken exactly this approach. The researchers examined blood samples collected continuously from 10 healthy individuals since the 1980s for evidence of infections—and reinfections—with four common coronaviruses. Unfortunately, it’s not particularly encouraging news. The new data show that immunity to other coronaviruses tends to be short-lived, with reinfections happening quite often about 12 months later and, in some cases, even sooner.

Prior to the discovery of SARS-CoV-2, six coronaviruses were known to infect humans. Four are responsible for relatively benign respiratory illnesses that regularly circulate to cause the condition we recognize as the common cold. The other two are more dangerous and, fortunately, less common: SARS-CoV-1, the virus responsible for outbreaks of Severe Acute Respiratory Syndrome (SARS), which ended in 2004; and MERS-CoV, the virus that causes the now rare Middle East Respiratory Syndrome (MERS).

In the new study, a team led by Lia van der Hoek, University of Amsterdam, the Netherlands, set out to get a handle on reinfections with the four common coronaviruses: HCoV-NL63, HCoV-229E, HCoV-OC43, and HCoV-HKU1. This task isn’t as straightforward as it might sound. That’s because, like SARS-CoV-2, infections with such viruses don’t always produce symptoms that are easily tracked. So, the researchers looked instead to blood samples from 10 healthy individuals enrolled for decades in the Amsterdam Cohort Studies on HIV-1 Infection and AIDS.

To detect coronavirus reinfections, they measured increases in antibodies to a particular portion of the nucleocapsid of each coronavirus. The nucleocapsid is a protein shell that encapsulates a coronavirus’ genetic material and serves as important targets for antibodies. An increase in antibodies targeting the nucleocapsid indicated that a person was fighting a new infection with one of the four coronaviruses.

All told, the researchers examined a total of 513 blood samples collected at regular intervals—every 3 to 6 months. In those samples, the team’s analyses uncovered 3 to 17 coronavirus infections per study participant over more than 35 years. Reinfections occurred every 6 to 105 months. But reinfections happened most frequently about a year after a previous infection.

Not surprisingly, they also found that blood samples collected in the Netherlands during the summer months—June, July, August, and September—had the lowest rate of infections for all four seasonal coronaviruses, indicating a higher frequency of infections in winter in temperate countries. While it remains to be seen, it’s possible that SARS-CoV-2 ultimately may share the same seasonal pattern after the pandemic.

These findings show that annual reinfections are a common occurrence for all other common coronaviruses. That’s consistent with evidence that antibodies against SARS-CoV-2 decrease within two months of infection [2]. It also suggests that similar patterns of reinfection may emerge for SARS-CoV-2 in the coming months and years.

At least three caveats ought to be kept in mind when interpreting these data. First, the researchers tracked antibody levels but didn’t have access to information about actual illness. It’s possible that a rise in antibodies to a particular coronavirus might have provided exactly the response needed to convert a significant respiratory illness to a mild case of the sniffles or no illness at all.

Second, sustained immunity to viruses will always be disrupted if the virus is undergoing mutational changes and presenting a new set of antigens to the host; the degree to which that might have contributed to reinfections is not known. And, third, the role of cell-based immunity in fighting off coronavirus infections is likely to be significant, but wasn’t studied in this retrospective analysis.

To prepare for COVID-19 this winter, it’s essential to understand how likely a person who has recovered from the illness will be re-infected and potentially spread the virus to other people. While much more study is needed, the evidence suggests it will be prudent to proceed carefully and with caution when it comes to long-term immunity, whether achieved through naturally acquired infections or vaccination.

While we await a COVID-19 vaccine, the best way to protect yourself, your family, and your community is to take simple steps all of us can do today: maintain social distancing, wear a mask, avoid crowded indoor gatherings, and wash your hands.

References:

[1] Seasonal coronavirus protective immunity is short-lasting. Edridge AWD, Kaczorowska J, Hoste ACR, Bakker M, Klein M, Loens K, Jebbink MF, Matser A, Kinsella CM, Rueda P, Ieven M, Goossens H, Prins M, Sastre P, Deijs M, van der Hoek L. Nat Med. 2020 Sep 14. doi: 10.1038/s41591-020-1083-1. [Published online ahead of print.]

[2] Rapid decay of anti-SARS-CoV-2 antibodies in persons with mild Covid-19. Ibarrondo FJ, Fulcher JA, Goodman-Meza D, Elliott J, Hofmann C, Hausner MA, Ferbas KG, Tobin NH, Aldrovandi GM, Yang OO. N Engl J Med. 2020 Sep 10;383(11):1085-1087.

Links:

Coronavirus (COVID-19) (NIH)

Lia van der hoek (University of Amsterdam, the Netherlands)


Immune T Cells May Offer Lasting Protection Against COVID-19

Posted on by

Healthy human T Cell
Caption: Scanning electron micrograph of a human T lymphocyte (T cell) from a healthy donor’s immune system. Credit: National Institute of Allergy and Infectious Diseases/NIH

Much of the study on the immune response to SARS-CoV-2, the novel coronavirus that causes COVID-19, has focused on the production of antibodies. But, in fact, immune cells known as memory T cells also play an important role in the ability of our immune systems to protect us against many viral infections, including—it now appears—COVID-19.

An intriguing new study of these memory T cells suggests they might protect some people newly infected with SARS-CoV-2 by remembering past encounters with other human coronaviruses. This might potentially explain why some people seem to fend off the virus and may be less susceptible to becoming severely ill with COVID-19.

The findings, reported in the journal Nature, come from the lab of Antonio Bertoletti at the Duke-NUS Medical School in Singapore [1]. Bertoletti is an expert in viral infections, particularly hepatitis B. But, like so many researchers around the world, his team has shifted their focus recently to help fight the COVID-19 pandemic.

Bertoletti’s team recognized that many factors could help to explain how a single virus can cause respiratory, circulatory, and other symptoms that vary widely in their nature and severity—as we’ve witnessed in this pandemic. One of those potential factors is prior immunity to other, closely related viruses.

SARS-CoV-2 belongs to a large family of coronaviruses, six of which were previously known to infect humans. Four of them are responsible for the common cold. The other two are more dangerous: SARS-CoV-1, the virus responsible for the outbreak of Severe Acute Respiratory Syndrome (SARS), which ended in 2004; and MERS-CoV, the virus that causes Middle East Respiratory Syndrome (MERS), first identified in Saudi Arabia in 2012.

All six previously known coronaviruses spark production of both antibodies and memory T cells. In addition, studies of immunity to SARS-CoV-1 have shown that T cells stick around for many years longer than acquired antibodies. So, Bertoletti’s team set out to gain a better understanding of T cell immunity against the novel coronavirus.

The researchers gathered blood samples from 36 people who’d recently recovered from mild to severe COVID-19. They focused their attention on T cells (including CD4 helper and CD8 cytotoxic, both of which can function as memory T cells). They identified T cells that respond to the SARS-CoV-2 nucleocapsid, which is a structural protein inside the virus. They also detected T cell responses to two non-structural proteins that SARS-CoV-2 needs to make additional copies of its genome and spread. The team found that all those recently recovered from COVID-19 produced T cells that recognize multiple parts of SARS-CoV-2.

Next, they looked at blood samples from 23 people who’d survived SARS. Their studies showed that those individuals still had lasting memory T cells today, 17 years after the outbreak. Those memory T cells, acquired in response to SARS-CoV-1, also recognized parts of SARS-CoV-2.

Finally, Bertoletti’s team looked for such T cells in blood samples from 37 healthy individuals with no history of either COVID-19 or SARS. To their surprise, more than half had T cells that recognize one or more of the SARS-CoV-2 proteins under study here. It’s still not clear if this acquired immunity stems from previous infection with coronaviruses that cause the common cold or perhaps from exposure to other as-yet unknown coronaviruses.

What’s clear from this study is our past experiences with coronavirus infections may have something important to tell us about COVID-19. Bertoletti’s team and others are pursuing this intriguing lead to see where it will lead—not only in explaining our varied responses to the virus, but also in designing new treatments and optimized vaccines.

Reference:

[1] SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls. Le Bert N, Tan AT, Kunasegaran K, et al. Nature. 2020 July 15. [published online ahead of print]

Links:

Coronavirus (COVID-19) (NIH)

Overview of the Immune System (National Institute of Allergy and Infectious Diseases/NIAID)

Bertoletti Lab (Duke-NUS Medical School, Singapore)


Researchers Publish Encouraging Early Data on COVID-19 Vaccine

Posted on by

Diagram of how mRNA vaccine works
Credit: NIH

People all around the globe are anxiously awaiting development of a safe, effective vaccine to protect against the deadly threat of coronavirus disease 2019 (COVID-19). Evidence is growing that biomedical research is on track to provide such help, and to do so in record time.

Just two days ago, in a paper in the New England Journal of Medicine [1], researchers presented encouraging results from the vaccine that’s furthest along in U.S. human testing: an innovative approach from NIH’s Vaccine Research Center (VRC), in partnership with Moderna Inc., Cambridge, MA [1]. The centerpiece of this vaccine is a small, non-infectious snippet of messenger RNA (mRNA). Injecting this mRNA into muscle will spur a person’s own body to make a key viral protein, which, in turn, will encourage the production of protective antibodies against SARS-CoV-2—the novel coronavirus that causes COVID-19.

While it generally takes five to 10 years to develop a vaccine against a new infectious agent, we simply don’t have that time with a pandemic as devastating as COVID-19. Upon learning of the COVID-19 outbreak in China early this year, and seeing the genome sequence of SARS-CoV-2 appear on the internet, researchers with NIH’s National Institute of Allergy and Infectious Diseases (NIAID) carefully studied the viral instructions, focusing on the portion that codes for a spike protein that the virus uses to bind to and infect human cells.

Because of their experience with the original SARS virus back in the 2000s, they thought a similar approach to vaccine development would work and modified an existing design to reflect the different sequence of the SARS-CoV-2 spike protein. Literally within days, they had created a vaccine in the lab. They then went on to work with Moderna, a biotech firm that’s produced personalized cancer vaccines. All told, it took just 66 days from the time the genome sequence was made available in January to the start of the first-in-human study described in the new peer-reviewed paper.

In the NIH-supported phase 1 human clinical trial, researchers found the vaccine, called mRNA-1273, to be safe and generally well tolerated. Importantly, human volunteers also developed significant quantities of neutralizing antibodies that target the virus in the right place to block it from infecting their cells.

Conducted at Kaiser Permanente Washington Health Research Institute, Seattle; and Emory University School of Medicine, Atlanta, the trial led by Kaiser Permanente’s Lisa Jackson involved healthy adult volunteers. Each volunteer received two vaccinations in the upper arm at one of three doses, given approximately one month apart.

The volunteers will be tracked for a full year, allowing researchers to monitor their health and antibody production. However, the recently published paper provides interim data on the phase 1 trial’s first 45 participants, ages 18 to 55, for the first 57 days after their second vaccination. The data revealed:

• No volunteers suffered serious adverse events.

• Optimal dose to elicit high levels of neutralizing antibody activity, while also protecting patient safety, appears to be 100 micrograms. Doses administered in the phase 1 trial were either 25, 100, or 250 micrograms.

• More than half of the volunteers reported fatigue, headache, chills, muscle aches, or pain at the injection site. Those symptoms were most common after the second vaccination and in volunteers who received the highest vaccine dose. That dose will not be used in larger trials.

• Two doses of 100 micrograms of the vaccine prompted a robust immune response, which was last measured 43 days after the second dose. These responses were actually above the average levels seen in blood samples from people who had recovered from COVID-19.

These encouraging results are being used to inform the next rounds of human testing of the mRNA-1273 vaccine. A phase 2 clinical trial is already well on its way to recruiting 600 healthy adults.This study will continue to profile the vaccine’s safety, as well as its ability to trigger an immune response.

Meanwhile, later this month, a phase 3 clinical trial will begin enrolling 30,000 volunteers, with particular focus on recruitment in regions and populations that have been particularly hard hit by the virus.

The design of that trial, referred to as a “master protocol,” had major contributions from the Accelerating COVID-19 Therapeutic Interventions and Vaccine (ACTIV) initiative, a remarkable public-private partnership involving 20 biopharmaceutical companies, academic experts, and multiple federal agencies. Now, a coordinated effort across the U.S. government, called Operation Warp Speed, is supporting rapid conduct of these clinical trials and making sure that millions of doses of any successful vaccine will be ready if the vaccine proves save and effective.

Results of this first phase 3 trial are expected in a few months. If you are interested in volunteering for these or other prevention trials, please check out NIH’s new COVID-19 clinical trials network.

There’s still a lot of work that remains to be done, and anything can happen en route to the finish line. But by pulling together, and leaning on the very best science, I am confident that we will be able rise to the challenge of ending this pandemic that has devastated so many lives.

Reference:

[1] A SARS-CoV-2 mRNA Vaccine—Preliminary Report. Jackson LA, Anderson EJ, Rouphael NG, Ledgerwood JE, Graham BS, Beigel JH, et al. NEJM. 2020 July 14. [Publication ahead of print]

Links:

Coronavirus (COVID-19) (NIH)

Dale and Betty Bumpers Vaccine Research Center (National Institute of Allergy and Infectious Diseases/NIH)

Moderna, Inc. (Cambridge, MA)

Safety and Immunogenicity Study of 2019-nCoV Vaccine (mRNA-1273) for Prophylaxis of SARS-CoV-2 Infection (COVID-19) (ClinicalTrials.gov)

NIH Launches Clinical Trials Network to Test COVID-19 Vaccines and Other Prevention Tools,” NIAID News Release, NIH, July 8, 2020.

Accelerating COVID-19 Therapeutic Interventions and Vaccines (ACTIV) (NIH)

Explaining Operation Warp Speed (U.S. Department of Health and Human Services, Washington, DC)

NIH Support: National Institute of Allergy and Infectious Diseases


Antibody Points to Possible Weak Spot on Novel Coronavirus

Posted on by

Credit: Meng Yuan and Nicholas Wu, Wilson Lab, The Scripps Research Institute, La Jolla, CA

Researchers are working hard to produce precise, 3D molecular maps to guide the development of safe, effective ways of combating the coronavirus disease 2019 (COVID-19) pandemic. While there’s been a lot of excitement surrounding the promise of antibody-based tests and treatments, this map you see above highlights another important use of antibodies: to inform efforts to design a vaccine.

This image shows the crystal structure of a human antibody (heavy chain in orange, light chain in yellow), which is a blood protein our immune systems produce to attack viruses and other foreign invaders. This particular antibody, called CR3022, is bound to a key surface protein of the novel coronavirus (white).

The CR3022 antibody actually doesn’t come from someone who has recovered from COVID-19. Instead, it was obtained from a person who, nearly two decades ago, survived a bout of severe acute respiratory syndrome (SARS). The SARS virus, which disappeared in 2004 after a brief outbreak in humans, is closely related to the novel coronavirus that causes COVID-19.

In a recent paper in the journal Science, the NIH-funded lab of Ian Wilson, The Scripps Research Institute, La Jolla, CA, along with colleagues at The University of Hong Kong, sought to understand how the human immune system interacts with and neutralizes this highly infectious virus [1]. The lab did so by employing high-resolution X-ray crystallography tools [2]. They captured the atomic structure of this antibody bound to its target by shooting X-rays through its crystallized form. (An antibody measures about 10 nanometers; a nanometer is 1 billionth of a meter.)

Other researchers had shown previously that CR3022 cross-reacts with the novel coronavirus, although the antibody doesn’t bind tightly enough to neutralize and stop it from infecting cells. So, Wilson’s team went to work to learn precisely where the antibody attaches to the novel virus. Those sites are of special interest because they highlight spots on a virus that are vulnerable to attack—and, as such, potentially good targets for vaccine designers.

A key finding in the new paper is that the antibody binds a highly similar site on both the SARS and novel coronaviruses. Those sites differ in each virus by just four amino acids, the building blocks of a protein.

This is particularly interesting because the antibody pictured above is bound to a spike protein, which is the appendage on both the SARS and novel coronavirus that enables them to bind to a key receptor protein on the surface of human cells, called ACE2. This binding activity marks the first step for these viruses in gaining entry into human cells and infecting them.

The human antibody shown in this image locks onto the virus’s spike protein at a different location than where the human ACE2 protein binds to the novel coronavirus. Intriguingly, the antibody binds to a spot on the novel coronavirus that is usually hidden, except for when virus shapeshifts its structure in order to infect a cell.

The findings suggest that a successful vaccine may be one that elicits antibodies that targets this same spot, but binds more tightly than the one seen above, thereby protecting human cells against the virus that causes COVID-19. However, Wilson notes that this study has just uncovered one potential vulnerability of the novel coronavirus, and it is likely the virus likely has many more that could be revealed with further study.

To continue in this quest to design a safe and effective vaccine, Wilson and his colleagues are now gathering blood samples to collect antibodies from people who’ve recovered from COVID-19. So, we can look forward to seeing some even more revealing images soon.

References:

[1] A highly conserved cryptic epitope in the receptor-binding domains of SARS-CoV-2 and SARS-CoV. Yuan M, Wu NC, Zhu X, Lee CD, So RTY, Lv H, Mok CKP, Wilson IA. Science. 2020 Apr 3.

[2] 100 Years Later: Celebrating the Contributions of X-ray Crystallography to Allergy and Clinical Immunology. Pomés A, Chruszcz M, Gustchina A, Minor W, Mueller GA, Pedersen LC, Wlodawer A, Chapman MD. J Allergy Clin Immunol. 2015 Jul;136(1):29-37.

Links:

Coronaviruses (National Institute of Allergy and Infectious Diseases/NIH)

Coronavirus (COVID-19) (NIH)

Ian Wilson (The Scripps Research Institute, La Jolla, CA)

NIH Support: National Institute of Allergy and Infectious Diseases; National Cancer Institute; National Institute of General Medical Sciences


Genomic Study Points to Natural Origin of COVID-19

Posted on by

COVID-19 Update

No matter where you go online these days, there’s bound to be discussion of coronavirus disease 2019 (COVID-19). Some folks are even making outrageous claims that the new coronavirus causing the pandemic was engineered in a lab and deliberately released to make people sick. A new study debunks such claims by providing scientific evidence that this novel coronavirus arose naturally.

The reassuring findings are the result of genomic analyses conducted by an international research team, partly supported by NIH. In their study in the journal Nature Medicine, Kristian Andersen, Scripps Research Institute, La Jolla, CA; Robert Garry, Tulane University School of Medicine, New Orleans; and their colleagues used sophisticated bioinformatic tools to compare publicly available genomic data from several coronaviruses, including the new one that causes COVID-19.

The researchers began by homing in on the parts of the coronavirus genomes that encode the spike proteins that give this family of viruses their distinctive crown-like appearance. (By the way, “corona” is Latin for “crown.”) All coronaviruses rely on spike proteins to infect other cells. But, over time, each coronavirus has fashioned these proteins a little differently, and the evolutionary clues about these modifications are spelled out in their genomes.

The genomic data of the new coronavirus responsible for COVID-19 show that its spike protein contains some unique adaptations. One of these adaptations provides special ability of this coronavirus to bind to a specific protein on human cells called angiotensin converting enzyme (ACE2). A related coronavirus that causes severe acute respiratory syndrome (SARS) in humans also seeks out ACE2.

Existing computer models predicted that the new coronavirus would not bind to ACE2 as well as the SARS virus. However, to their surprise, the researchers found that the spike protein of the new coronavirus actually bound far better than computer predictions, likely because of natural selection on ACE2 that enabled the virus to take advantage of a previously unidentified alternate binding site. Researchers said this provides strong evidence that that new virus was not the product of purposeful manipulation in a lab. In fact, any bioengineer trying to design a coronavirus that threatened human health probably would never have chosen this particular conformation for a spike protein.

The researchers went on to analyze genomic data related to the overall molecular structure, or backbone, of the new coronavirus. Their analysis showed that the backbone of the new coronavirus’s genome most closely resembles that of a bat coronavirus discovered after the COVID-19 pandemic began. However, the region that binds ACE2 resembles a novel virus found in pangolins, a strange-looking animal sometimes called a scaly anteater. This provides additional evidence that the coronavirus that causes COVID-19 almost certainly originated in nature. If the new coronavirus had been manufactured in a lab, scientists most likely would have used the backbones of coronaviruses already known to cause serious diseases in humans.

So, what is the natural origin of the novel coronavirus responsible for the COVID-19 pandemic? The researchers don’t yet have a precise answer. But they do offer two possible scenarios.

In the first scenario, as the new coronavirus evolved in its natural hosts, possibly bats or pangolins, its spike proteins mutated to bind to molecules similar in structure to the human ACE2 protein, thereby enabling it to infect human cells. This scenario seems to fit other recent outbreaks of coronavirus-caused disease in humans, such as SARS, which arose from cat-like civets; and Middle East respiratory syndrome (MERS), which arose from camels.

The second scenario is that the new coronavirus crossed from animals into humans before it became capable of causing human disease. Then, as a result of gradual evolutionary changes over years or perhaps decades, the virus eventually gained the ability to spread from human-to-human and cause serious, often life-threatening disease.

Either way, this study leaves little room to refute a natural origin for COVID-19. And that’s a good thing because it helps us keep focused on what really matters: observing good hygiene, practicing social distancing, and supporting the efforts of all the dedicated health-care professionals and researchers who are working so hard to address this major public health challenge.

Finally, next time you come across something about COVID-19 online that disturbs or puzzles you, I suggest going to FEMA’s new Coronavirus Rumor Control web site. It may not have all the answers to your questions, but it’s definitely a step in the right direction in helping to distinguish rumors from facts.

Reference:
[1] The proximal origin of SARS-CoV-2. Andersen KG, Rambaut A, Lipkin WI, Holmes EC, Garry RF. Nat Med, 17 March 2020. [Epub ahead of publication]

Links:

Coronavirus (COVID-19) (NIH)

COVID-19, MERS & SARS (National Institute of Allergy and Infectious Diseases/NIH)

Andersen Lab (Scripps Research Institute, La Jolla, CA)

Robert Garry (Tulane University School of Medicine, New Orleans)

Coronavirus Rumor Control (FEMA)

NIH Support: National Institute of Allergy and Infectious Diseases; National Human Genome Research Institute


Next Page