Skip to main content

cryo-EM

A Lean, Mean DNA Packaging Machine

Posted on by

Three views of bacteriophage T4

Credit: Victor Padilla-Sanchez, The Catholic University of America, Washington, D.C.

All plants and animals are susceptible to viral infections. But did you know that’s also true for bacteria? They get nailed by viruses called bacteriophages, and there are thousands of them in nature including this one that resembles a lunar lander: bacteriophage T4 (left panel). It’s a popular model organism that researchers have studied for nearly a century, helping them over the years to learn more about biochemistry, genetics, and molecular biology [1].

The bacteriophage T4 infects the bacterium Escherichia coli, which normally inhabits the gastrointestinal tract of humans. T4’s invasion starts by touching down on the bacterial cell wall and injecting viral DNA through its tube-like tail (purple) into the cell. A DNA “packaging machine” (middle and right panels) between the bacteriophage’s “head” and “tail” (green, yellow, blue spikes) keeps the double-stranded DNA (middle panel, red) at the ready. All the vivid colors you see in the images help to distinguish between the various proteins or protein subunits that make up the intricate structure of the bacteriophage and its DNA packaging machine.


Cryo-EM Images Capture Key Enzyme Tied to Cancer, Aging

Posted on by

Each time your cells divide, telomeres—complexes of specialized DNA sequences, RNA, and protein that protect the tips of your chromosomes—shorten just a bit.  And, as the video shows, that shortening renders the genomic information on your chromosomes more vulnerable to changes that can drive cancer and other diseases of aging.

Consequently, over the last few decades, much research has focused on efforts to understand telomerase, a naturally occurring enzyme that helps to replace the bits of telomere lost during cell division. But there’s been a major hitch: until recently, scientists hadn’t been able to determine telomerase’s molecular structure in detail—a key step in figuring out exactly how the enzyme works. Now, thanks to better purification methods and an exciting technology called cryo-electron microscopy (cryo-EM), NIH-funded researchers and their colleagues have risen to the challenge to produce the most detailed view yet of human telomerase in its active form [1].

This structural biology advance is a critical step toward learning more about the role of telomerase in cancers, as well as genetic conditions linked to telomerase deficiencies. It’s also an important milestone in the quest for drugs targeting telomerase in different ways, perhaps to slow the growth of cancerous cells or to boost the proliferative capacity of life-giving adult stem cells.

One reason telomerase has been so difficult to study in humans is that the enzyme isn’t produced at detectable levels in the vast majority of our cells. To get around this problem, the team led by Eva Nogales and Kathleen Collins at the University of California, Berkeley, first coaxed human cells in the lab to produce larger quantities of active telomerase. They then used fluorescent microscopy, along with extensive knowledge of the enzyme’s biochemistry, to develop a multi-step purification process that yielded relatively homogenous samples of active telomerase.

The new study is also yet another remarkable example of how cryo-EM microscopy has opened up new realms of scientific possibility. That’s because, in comparison to other methods, cryo-EM enables researchers to solve complex macromolecular structures even when only tiny amounts of material are available. It can also produce detailed images of molecules, like telomerase, that are extremely flexible and hard to keep still while taking a picture of their structure.

As described in Nature, the researchers used cryo-EM to capture the structure of human telomerase in unprecedented detail. Their images reveal two lobes, held together by a flexible RNA tether. One of those lobes contains the highly specialized core enzyme. It uses an internal RNA template as a guide to make the repetitive, telomeric DNA that’s added at the tips of chromosomes. The second lobe, consisting of a complex of RNA and RNA-binding proteins, plays important roles in keeping the complex stable and properly in place.

This new, more-detailed view helps to explain how mutations in particular genes may lead to telomerase-related health conditions, including bone marrow failure, as well as certain forms of anemia and pulmonary fibrosis. For example, it reveals that a genetic defect known to cause bone marrow failure affects an essential protein in a spot that’s especially critical for telomerase’s proper conformation and function.

This advance will also be a big help for designing therapies that encourage telomerase activity. For example, it could help to boost the success of bone marrow transplants by rejuvenating adult stem cells. It might also be possible to reinforce the immune systems of people with HIV infections. While telomerase-targeted treatments surely won’t stop people from growing old, new insights into this important enzyme will help to understand aging better, including why some people appear to age faster than others.

As remarkable as these new images are, the researchers aren’t yet satisfied. They’ll continue to refine them down to the minutest structural details. They say they’d also like to use cryo-EM to understand better how the complex attaches to chromosomes to extend telomeres. Each new advance in the level of atomic detail will not only make for amazing new videos, it will help to advance understanding of human biology in health, aging, and disease.

References:

[1] Cryo-EM structure of substrate-bound human telomerase holoenzyme. Nguyen THD, Tam J, Wu RA, Greber BJ, Toso D, Nogales E, Collins K. Nature. 2018 April 25. [Epub ahead of publication]

Links:

High Resolution Electron Microscopy (National Cancer Institute/NIH)

Nogales Lab (University of California, Berkeley)

Collins Lab (University of California, Berkeley)

NIH Support: National Institute of General Medical Sciences   


What a Year It Was! A Look Back at Research Progress in 2017

Posted on by

I want to wish everyone a Happy New Year! Hope your 2018 is off to a great start.

Over the holidays, the journal Science published its annual, end-of-the-year list of research breakthroughs, from anthropology to zoology. I always look forward to seeing the list and reflecting on some of the stunning advances reported in the past 12 months. Last year was no exception. Science’s 2017 Breakthrough of the Year, as chosen by its editors, was in the field of astrophysics. Scientists were able to witness the effects of the collision of two neutron stars—large stars with collapsed inner cores—smacking into each other 130 million light years away. How cool is that!

Numbered prominently among the nine other breakthroughs were five from biomedicine: gene therapy, gene editing, cancer immunotherapy, cryo-EM, and biology preprints. All involved varying degrees of NIH support, and all drew great interest from readers. In fact, three of the top four vote-getters in the “People’s Choice” category came from biomedicine. That includes the People’s 2017 Breakthrough of the Year: gene therapy success. And so, in what has become a Director’s Blog tradition, I’ll kick off our new year of posts by taking a closer look at these biomedical breakthroughs—starting with the little girl in the collage above, and moving clockwise around the images:


Twinkle, Twinkle Little Cryo-EM Star

Posted on by

The stars are out and shining this holiday season. But there are some star-shaped structures now under study in the lab that also give us plenty of reason for hope. One of them is a tiny virus called bacteriophage phi-6, which researchers are studying in an effort to combat a similar, but more-complex, group of viruses that can cause life-threatening dehydration in young children.

Thanks to a breakthrough technology called cryo-electron microscopy (cryo-EM), NIH researchers recently captured, at near atomic-level of detail, the 3D structure of this immature bacteriophage phi-6 particle in the process of replication. At the points of its “star,” key proteins (red) are positioned to transport clipped, single-stranded segments of the virus’ own genetic information into its newly made shell, or procapsid (blue). Once inside the procapsid, an enzyme (purple) will copy the segments to make the genetic information double-stranded, while another protein (yellow) will help package them. As the procapsid matures, it undergoes dramatic structural changes.


Creative Minds: Preparing for Future Pandemics

Posted on by

Jonathan Abraham

Jonathan Abraham / Credit: ChieYu Lin

Growing up in Queens, NY, Jonathan Abraham developed a love for books and an interest in infectious diseases. One day Abraham got his hands on a copy of Laurie Garrett’s The Coming Plague, a 1990s bestseller warning of future global pandemics, and he sensed his life’s calling. He would help people around the world survive deadly viral outbreaks, particularly from Ebola, Marburg, and other really bad bugs that cause deadly hemorrhagic fevers.

Abraham, now a physician-scientist at Brigham and Women’s Hospital, Boston, continues to chase that dream. With support from an NIH Director’s 2016 Early Independence Award, Abraham has set out to help design the next generation of treatments to enable more people to survive future outbreaks of viral hemorrhagic fever. His research strategy: find antibodies in the blood of known survivors that helped them overcome their infections. With further study, he hopes to develop purified forms of the antibodies as potentially life-saving treatments for people whose own immune systems may not make them in time. This therapeutic strategy is called passive immunity.


Next Page