Skip to main content

protein modeling

AIDS Vaccine Research: Better By Design?

Posted on by

OD-GT8 60mer

Caption: eOD-GT8 60mer nanoparticle based on the engineered protein eOD-GT8. Yellow shows where eOD-GT8 binds antibodies; white is the protein surface outside the binding site; light blue indicates the sugars attached to the protein; dark blue is the nanoparticle core to which eOD-GT8 has been fused.
Credit: Sergey Menis and William Schief, The Scripps Research Institute

A while ago, I highlighted a promising new approach for designing a vaccine against the human immunodeficiency virus (HIV), the cause of AIDS. This strategy would “take the immune system to school” and teach it a series of lessons using several vaccine injections—each consisting of a different HIV proteins designed to push the immune system, step by step, toward the production of protective antibodies capable of fending off virtually all HIV strains. But a big unanswered question was whether most people actually possess the specific type of precursor immune cells that that can be taught to produce antibodies that kill HIV.

Now, we may have the answer [1]. In a study published in the journal Science, a research team, partly supported by NIH, found that the majority of people do indeed have these precursor cells. While the total number of these cells in each person may be low, this may be all that’s needed for the immune system to recognize a vaccine. Based in part on these findings, researchers plan to launch a Phase 1 clinical trial in human volunteers to see if their latest engineered protein can find these precursor cells and begin coaxing them through the complicated process of producing protective antibodies.


LabTV: Curious about Computer Modeling of Proteins

Posted on by

Josh Carter

In many ways, Josh Carter is a typical college student, with a hectic schedule packed with classes and social activities. But when he enters a structural biology lab at Montana State University in Bozeman, Carter encounters an even faster paced world in which molecular interactions can be measured in femtoseconds—that is, 1 millionth of 1 billionth of 1 second.

Working under the expert eye of principal investigator Blake Wiedenheft, Carter is applying his computational skills to X-ray crystallography data to model the structures of various proteins, as well as to chart their evolution over time and map their highly dynamic interactions with other proteins and molecules. This basic science work is part of this NIH-funded lab’s larger mission to understand how bacteria defend themselves from the viruses that try to infect them. It’s a fascinating area of science with a wide range of potential applications, from treating diseases that arise from imbalances in the microbiome (the communities of microbes that live in and on our bodies) to developing new methods for gene editing and programmable control of gene expression.