Skip to main content

booster

The Latest on COVID-19 Boosters

Posted on by

COVID-19 Vaccine vials labeled dose one, dose two, and booster

More than 180 million Americans, including more than 80 percent of people over age 65, are fully vaccinated against the SARS-CoV-2 virus responsible for COVID-19. There’s no question that full vaccination is the best way to protect yourself against this devastating virus and reduce your chances of developing severe or long-lasting illness if you do get sick. But, to stay ahead of this terrible virus, important questions do remain. A big one right now is: How soon will booster shots be needed and for whom?

The answers to this question will continue to evolve as more high-quality data become available. But here’s what we know right now for the Pfizer-BioNTech booster. Late last week, Dr. Rochelle Walensky, the Director of the Centers for Disease Control and Prevention (CDC), recommended that:

  • Those 65 years and older and residents in long-term care settings should receive a booster shot at least 6 months after being fully vaccinated with the Pfizer-BioNTech vaccine,
  • People aged 50–64 years with underlying medical conditions should receive a booster shot at least 6 months after being fully vaccinated with the Pfizer-BioNTech vaccine,
  • Individuals aged 18–49 years with underlying medical conditions may receive a booster shot at least 6 months after getting fully vaccinated with their Pfizer-BioNTech vaccine, based on their individual benefits and risks.
  • Frontline workers who received the Pfizer-BioNTech vaccine may receive a booster. This group includes anyone age 18 through 64 whose frequent institutional or occupational exposure to SARS-CoV-2 puts them at high risk of COVID-19. [1]

Taken together, these CDC recommendations are in line with those issued two days earlier by the Food and Drug Administration (FDA) [2].

Some of the most-compelling data that was under review came from an Israeli study, published recently in the New England Journal of Medicine, that explored the benefit of booster shots for older people [3]. Israel, with a population of around 9 million, has a national health system and one of the world’s highest COVID-19 vaccination rates. That country’s vaccination campaign, based solely on Pfizer-BioNTech, was organized early in 2021, and so its experience is about three months ahead of ours here in the U.S. These features, plus some of the world’s largest integrated health record databases, have made Israel an important source of early data on how the Pfizer-BioNTech mRNA vaccine can be expected to work in the real world over time.

Earlier this year, Israeli public health officials noted evidence for an increased number of breakthrough infections, some of which were severe. So, at the end of July 2021, Israel approved the administration of third doses, or “boosters,” of the Pfizer-BioNTech vaccine for people ages 60 and up who had received their second dose at least five months before.

To find out how well these booster shots worked to bolster immune protection against COVID-19, researchers looked to more than 1.1 million fully vaccinated people who were at least 60 years old. They compared the rate of confirmed COVID-19 infection and severe illness from the end of July to the end of August among people who’d received a booster at least 12 days earlier with those who hadn’t gotten boosters.

Nearly 13,500 older individuals who’d been fully vaccinated before March 2021, got a breakthrough infection during the two months of study. Importantly, the rate of confirmed infection in the group that got boosters was 10 times lower on average than in the group that didn’t get boosters. The data on severe illness looked even better. Of course, there could be other factors at play that weren’t accounted for in the study, but the findings certainly suggest that a third Pfizer shot is safe and effective for older people.

Though the Israeli studies on booster shots are a little ahead of the international pack, we are starting to see results from the research underway in the U.S. Last week, for example, Johnson & Johnson announced new data in support of boosters to improve and extend immune protection in those who received its single-dose COVID-19 vaccine [4]. For people who received the Moderna mRNA vaccine, the company has already submitted its data to the FDA for booster authorization. A decision is expected soon.

As the critical evidence on boosters continues to emerge, the most important way to avoid another winter surge of COVID-19 is to follow all public health recommendations. Most importantly, that includes getting fully vaccinated if you haven’t already, and encouraging others around you to do the same. If you’re currently eligible for a booster shot, they are available at 80,000 locations across the nation, and can help you stay healthy and well for the coming holiday season.

For others eager to do everything possible to protect themselves, their families, and their communities against this terrible virus—but who are not yet eligible for a booster—sit tight for now. The data on booster shots are still coming in for folks like me who were immunized with the Moderna or Johnson & Johnson vaccines. It’s likely that the FDA and CDC will widen their recommendations in the coming weeks.

In the meantime, the Delta variant is still out there and circulating. That makes it critical to maintain vigilance. Wear a mask in indoor spaces, keep a physical distance from others, and remember to wash your hands frequently. We are all really tired of COVID-19, but patience is still required as we learn more about how best to stay ahead of this virus.

References:

[1] CDC statement on ACIP booster recommendations. Centers for Disease Control and Prevention news release. September 24, 2021

[2] FDA authorizes booster dose of Pfizer-BioNTech COVID-19 vaccine for certain populations. Food and Drug Administration news release. September 22, 2021

[3] Protection of BNT162b2 vaccine booster against Covid-19 in Israel. Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Kalkstein N, Mizrahi B, Alroy-Preis S, Ash N, Milo R, Huppert A. N Engl J Med. 2021 Sep 15.

[4] Johnson & Johnson announces real-world evidence and Phase 3 data confirming strong and long-lasting protection of single-shot COVID-19 vaccine in the U.S. Johnson & Johnson. September 21, 2021.

Links:

COVID-19 Research (NIH)


mRNA Vaccines May Pack More Persistent Punch Against COVID-19 Than Thought

Posted on by

Many people, including me, have experienced a sense of gratitude and relief after receiving the new COVID-19 mRNA vaccines. But all of us are also wondering how long the vaccines will remain protective against SARS-CoV-2, the coronavirus responsible for COVID-19.

Earlier this year, clinical trials of the Moderna and Pfizer-BioNTech vaccines indicated that both immunizations appeared to protect for at least six months. Now, a study in the journal Nature provides some hopeful news that these mRNA vaccines may be protective even longer [1].

In the new study, researchers monitored key immune cells in the lymph nodes of a group of people who received both doses of the Pfizer-BioNTech mRNA vaccine. The work consistently found hallmarks of a strong, persistent immune response against SARS-CoV-2 that could be protective for years to come.

Though more research is needed, the findings add evidence that people who received mRNA COVID-19 vaccines may not need an additional “booster” shot for quite some time, unless SARS-CoV-2 evolves into new forms, or variants, that can evade this vaccine-induced immunity. That’s why it remains so critical that more Americans get vaccinated not only to protect themselves and their loved ones, but to help stop the virus’s spread in their communities and thereby reduce its ability to mutate.

The new study was conducted by an NIH-supported research team led by Jackson Turner, Jane O’Halloran, Rachel Presti, and Ali Ellebedy at Washington University School of Medicine, St. Louis. That work builds upon the group’s previous findings that people who survived COVID-19 had immune cells residing in their bone marrow for at least eight months after the infection that could recognize SARS-CoV-2 [2]. The researchers wanted to see if similar, persistent immunity existed in people who hadn’t come down with COVID-19 but who were immunized with an mRNA vaccine.

To find out, Ellebedy and team recruited 14 healthy adults who were scheduled to receive both doses of the Pfizer-BioNTech vaccine. Three weeks after their first dose of vaccine, the volunteers underwent a lymph node biopsy, primarily from nodes in the armpit. Similar biopsies were repeated at four, five, seven, and 15 weeks after the first vaccine dose.

The lymph nodes are where the human immune system establishes so-called germinal centers, which function as “training camps” that teach immature immune cells to recognize new disease threats and attack them with acquired efficiency. In this case, the “threat” is the spike protein of SARS-COV-2 encoded by the vaccine.

By the 15-week mark, all of the participants sampled continued to have active germinal centers in their lymph nodes. These centers produced an army of cells trained to remember the spike protein, along with other types of cells, including antibody-producing plasmablasts, that were locked and loaded to neutralize this key protein. In fact, Ellebedy noted that even after the study ended at 15 weeks, he and his team continued to find no signs of germinal center activity slowing down in the lymph nodes of the vaccinated volunteers.

Ellebedy said the immune response observed in his team’s study appears so robust and persistent that he thinks that it could last for years. The researcher based his assessment on the fact that germinal center reactions that persist for several months or longer usually indicate an extremely vigorous immune response that culminates in the production of large numbers of long-lasting immune cells, called memory B cells. Some memory B cells can survive for years or even decades, which gives them the capacity to respond multiple times to the same infectious agent.

This study raises some really important issues for which we still don’t have complete answers: What is the most reliable correlate of immunity from COVID-19 vaccines? Are circulating spike protein antibodies (the easiest to measure) the best indicator? Do we need to know what’s happening in the lymph nodes? What about the T cells that are responsible for cell-mediated immunity?

If you follow the news, you may have seen a bit of a dust-up in the last week on this topic. Pfizer announced the need for a booster shot has become more apparent, based on serum antibodies. Meanwhile, the Food and Drug Administration and Centers for Disease Control and Prevention said such a conclusion would be premature, since vaccine protection looks really good right now, including for the delta variant that has all of us concerned.

We’ve still got a lot more to learn about the immunity generated by the mRNA vaccines. But this study—one of the first in humans to provide direct evidence of germinal center activity after mRNA vaccination—is a good place to continue the discussion.

References:

[1] SARS-CoV-2 mRNA vaccines induce persistent human germinal centre responses. Turner JS, O’Halloran JA, Kalaidina E, Kim W, Schmitz AJ, Zhou JQ, Lei T, Thapa M, Chen RE, Case JB, Amanat F, Rauseo AM, Haile A, Xie X, Klebert MK, Suessen T, Middleton WD, Shi PY, Krammer F, Teefey SA, Diamond MS, Presti RM, Ellebedy AH. Nature. 2021 Jun 28. [Online ahead of print]

[2] SARS-CoV-2 infection induces long-lived bone marrow plasma cells in humans. Turner JS, Kim W, Kalaidina E, Goss CW, Rauseo AM, Schmitz AJ, Hansen L, Haile A, Klebert MK, Pusic I, O’Halloran JA, Presti RM, Ellebedy AH. Nature. 2021 May 24. [Online ahead of print]

Links:

COVID-19 Research (NIH)

Ellebedy Lab (Washington University, St. Louis)

NIH Support: National Institute of Allergy and Infectious Diseases; National Center for Advancing Translational Sciences