Skip to main content

STEM

STEM Education and Training Builds Diversity Among Next Generation of Biomedical Scientists

Posted on by Jon Lorsch, Ph.D., National Institute of General Medical Sciences

cartoon scientists working together
Credit: National Institute of General Medical Sciences, NIH

Nelson Mandela said, “Education is the most powerful weapon which you can use to change the world.” At NIH’s National Institute of General Medical Sciences (NIGMS), we believe that educating future and current scientists from diverse backgrounds benefits the entire biomedical research enterprise, changing the world through advances in disease diagnosis, treatment, and prevention.

As the summer winds down and students and educators embark on a new school year, I thought I’d highlight some of our educational resources that complement science, technology, engineering, and math (STEM) curricula. I’d also like to draw your attention to training programs designed to inspire and support research careers.

STEM Programs and Resources from NIH

The NIGMS Science Education Partnership Awards (SEPAs) are resources that provide opportunities for pre-K-12 students from underserved communities to access STEM educational resources. It lets them aspire to careers in health research.

The SEPA grants in almost every state support innovative, research-based, science education programs, furthering NIGMS’ mission to ensure a strong and diverse research ecosystem. Resources generated through SEPAs are free, mapped to state and national teaching standards for STEM, and rigorously evaluated for effectiveness. These resources include mobile laboratories, health exhibits in museums and science centers, educational resources for students, and professional development for teachers.

One SEPA program at Purdue University College of Veterinary Medicine, West Lafayette, IN, pairs veterinarians from their nationwide “superhero” League of VetaHumanz with local schools or community centers that support underserved students. These professional veterinarians, also from diverse backgrounds, strive to help young students from underrepresented groups envision future careers caring for animals.

Another SEPA program at Baylor University, Waco, TX, is increasing access to chemistry labs for high schoolers with blindness. It uses a robotic reactor with enhanced safety features to eliminate many dangers of synthetic organic chemistry. Students with blindness can control the robot to conduct experiments in a similar fashion to their sighted counterparts. The robot is housed within an airtight, blast-proof glove box, and it can perform common chemistry operations such as weighing and dispensing solid or liquid reagents; delivering solvents; combining reagents with the solvents; and stirring, heating, or cooling the reaction mixtures.

As noted in the 2021 report from the White House’s Office of Science and Technology Policy, “equity and inclusion are fundamental prerequisites for making high-quality STEM education accessible to all Americans and will maximize the creative capacity of tomorrow’s workforce.” I believe this statement falls right in line with the spirit of SEPAs.

New NIH-Wide STEM Teaching Resources Website

To help educators find free science education content, we recently launched a STEM teaching resources website. It includes NIH-wide teaching materials as well as those from SEPA programs for grades K-12, categorized by different health and research topic areas.

The NIGMS free educational resource Pathways, designed for educators and aspiring scientists in grades 6-12, is one of many resources available through the STEM website. Each issue of Pathways provides information about basic biomedical science and research careers and includes a student magazine, teacher lesson plans, and interactives such as Kahoot! classroom quizzes. Our most recent vaccine science issue teaches students how COVID-19 vaccines work in the body and introduces them to scientists dedicated to vaccine research.

Programs for Early Career Scientists

While SEPA grants focus on future scientists (and their educators) in grades pre-K-12, NIGMS also has a robust research training portfolio for those at the undergraduate through postdoctoral and professional levels. These programs aim to enhance diversity by engaging and training scientists from diverse backgrounds early in their careers.

At the undergraduate level, programs like Maximizing Access to Research Careers (MARC) provide students from diverse backgrounds with mentorship and career development. We recently highlighted the MARC program at Vanderbilt University, Nashville, TN, on our Biomedical Beat blog showing the program’s impact on students.

At the other end of the spectrum, our Maximizing Opportunities for Scientific and Academic Independent Careers (MOSAIC) program helps promising postdoctoral researchers from diverse backgrounds transition into independent faculty careers. The MOSAIC scholars become part of a career development program to expand their professional networks and gain additional skills and mentoring through scientific societies. You can learn more about each of these impressive early career scientists on our MOSAIC Scholars webpages.

At NIGMS, we’re dedicated to increasing the diversity of the biomedical research workforce. Through STEM content and outreach, as well as scientist training resources, we focus on emphasizing diversity, equity, inclusion, and accessibility. This holds true with funding and programming for current scientists, and in the inspiration and training of future scientists.

Links:

STEM Teaching Resources Website (NIH)

Science Education Partnership Award (SEPA) (NIH)

SEPA Award (National Institute of General Medical Sciences/NIH)

The League of VetaHumanz: Encouraging Kids to Use Their Powers for Good! (Biomedical Beat Blog/NIGMS)

Pathways (NIGMS)

Maximizing Access to Research Careers (MARC) Awards (NIGMS)

Catching Up With ReMARCable Vanderbilt Graduates (Biomedical Beat Blog/NIGMS)

Maximizing Opportunities for Scientific and Academic Independent Careers (MOSAIC) (NIGMS)

Note: Dr. Lawrence Tabak, who performs the duties of the NIH Director, has asked the heads of NIH’s Institutes and Centers (ICs) to contribute occasional guest posts to the blog to highlight some of the interesting science that they support and conduct. This is the 15th in the series of NIH IC guest posts that will run until a new permanent NIH director is in place.


Unlocking Potential in The Next Generation of Scientists

Posted on by Griffin P. Rodgers, M.D., M.A.C.P., National Institute of Diabetes and Digestive and Kidney Diseases

Photo of smiling people stand with ocean behind them, over map of Guam
Caption: The Pacific STEP-UP team visits Guam for opening of NIDDK lab (l-r): George Hui, University of Hawaii at Manoa; NIDDK’s Griffin P. Rodgers and Lawrence Agodoa; Aneesa Golshan, University of Hawaii at Manoa; Robert Rivers, NIDDK. Credit: Kristina C. Sayama, University of Guam

While talent is everywhere, opportunity is not. That belief, and meeting people where they are, have been the impetus for the efforts of NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) to nurture diverse research talent in the Pacific Islands. Most recently that effort manifested in opening a new biomedical research laboratory at Southern High School, located in Santa Rita village on the island of Guam.

One of seven research labs in the Pacific Islands established under NIDDK’s Short-Term Research Experience Program to Unlock Potential (STEP-UP), the facility provides research training to high school and college students from historically underserved populations, which is the mission of STEP-UP. The goal is to foster a diverse, talented scientific workforce.

Created by NIDDK more than 20 years ago, STEP-UP aims to make opportunities accessible to aspiring scientists nationwide, regardless of their background or zip code. In 2009, we expanded the program to the Pacific Islands. By working with academic and nonprofit coordinating centers throughout the United States and its Pacific territories, the program enables students to gain hands-on research experience, one-on-one mentorship, and access to modern laboratory techniques without travelling far from home.

For Mata’uitafa Solomona-Faiai, a Ph.D. student at Yale University School of Public Health, New Haven, CT, the exposure to science through STEP-UP turned into a passion for research. Solomona-Faiai participated in STEP-UP as a high schooler in American Samoa, and again as a college undergraduate. After getting her master’s degree at George Washington University in Washington, D.C., she returned to American Samoa to conduct epidemiology research—and became a co-mentor to high school STEP-UP students. 

Her experiences in STEP-UP made her realize she wanted to pursue a life of public health research and gave her the skills to help pave that path. I was delighted to learn that Solomona-Faiai recently received an NIDDK Diversity Supplement to help support her research, which will focus on improving diabetes outcomes among adolescents from the Pacific Islands. She also hopes one day to run her own research group as an independent principal investigator, and I’m confident in her tenacity to make that happen! 

Solomona-Faiai is among more than 2,300 students who have participated in STEP-UP since 2000. Her story embodies the scientific potential we can access if we contribute the right resources and tools. Early evaluation results of STEP-UP from 2002 to 2018 showed that many of the program’s participants have pursued careers as researchers, physicians, and physician-scientists [1]. In addition, of the more than 300 high school STEP-UP participants in the Pacific Islands, most have gone on to attend four-year universities, many majoring in STEM disciplines [2]. I’m heartened to know our efforts are paying off.

Bringing scientific opportunity to the Pacific Islands has entailed more than just placing students into research labs. We found we had to help create infrastructure—building labs in often under-resourced areas where nearly no biomedical infrastructure previously existed.

Since 2008, NIDDK has helped establish research labs at high schools and community colleges in the American Samoa, Commonwealth of the Northern Mariana Islands, Republic of the Marshall Islands, Federated States of Micronesia, Republic of Palau, and now Guam. The labs are also available to faculty to conduct their own science and to train as mentors. Having the support of their teachers is particularly important for students in these areas, many of whom have never heard of biomedical research before. For them, the labs often provide their first real exposure to science.  

As proud as I am of the strides we’ve made, I know we have much more work to do. That’s why I’m grateful to the unwavering commitment of my colleagues, including Lawrence Agodoa who has pioneered STEP-UP and other programs in NIDDK’s Office of Minority Health Research Coordination; Robert Rivers, who coordinates NIDDK’s training programs; and George Hui at University of Hawaii at Manoa, who has directed the Pacific STEP-UP for 15 years.

They, like so many of NIDDK’s staff, partners, and grantees, will continue to work relentlessly to achieve our institute’s vision of developing a talented biomedical research workforce that fully represents the diverse fabric of the United States and its territories.

This month, we welcome a new class of STEP-UP participants, and I hope that, like Solomona-Faiai, they’ll experience the excitement of scientific discovery that will help shape their career goals and propel them to attain those goals. And I’m reminded of the tremendous responsibility we have to nurture and support the next generation of scientists. After all, the future of our nation’s health is in their hands.

References:

[1] NIDDK’s short-term research experience for underrepresented persons (STEP-UP) program. Rivers, R., Brinkley, K., Agodoa, L. JHDRP. 2019 Summer; 12: 1-2.

[2] Promoting local talents to fight local health issues: STEP-UP in the Pacific. Golshan, A., Hui, G. JHDRP. 2019 Summer; 12: 31-32.

Links:

Short-Term Research Experience Program to Unlock Potential (National Institute of Diabetes and Digestive and Kidney Diseases/NIH)

Office of Minority Health Research Coordination (NIDDK)

Note: Acting NIH Director Lawrence Tabak has asked the heads of NIH’s Institutes and Centers (ICs) to contribute occasional guest posts to the blog to highlight some of the interesting science that they support and conduct. This is the 12th in the series of NIH IC guest posts that will run until a new permanent NIH director is in place.


Serenading the Scientists of Tomorrow

Posted on by Dr. Francis Collins

Dr. Francis Collins performs a song on stage at the AJAS Breakfast with Scientists
I brought along my guitar to help welcome American Junior Academy of Science (AJAS) delegates to Washington, D.C., on February 19, 2019. AJAS is an honor society that encourages high school students to pursue STEM careers. Credit: Lee Ann Brogie

Talking with Middle School Students in Wisconsin

Posted on by Dr. Francis Collins

I live-streamed recently with a sharp group of science students at the Johnson Creek Middle School, Johnson Creek WI. The topic of our conversation was how to pursue a career in Science, Technology, Engineering, and Mathematics (STEM)? Among the questions that the students posed: What inspired you to become a scientist? What are roadblocks and how do you to overcome them? Here are my answers as well as our full conversation, which took place on December 10, 2018.


A Group Photo with HiSTEP Students

Posted on by Dr. Francis Collins

Francis Collins and HiSTEP students

These terrific students are part of the NIH High School Scientific Training and Enrichment Program (HiSTEP), which encourages careers in STEM (science, technology, engineering, mathematics, and medically related fields). HiSTEP students take part in a seven-week summer internship on the NIH campus. I had the pleasure of meeting with them on August 1, 2018. Credit: NIH


Cool Videos: Insulin from Bacteria to You

Posted on by Dr. Francis Collins

If you have a smartphone, you’ve probably used it to record a video or two. But could you use it to produce a video that explains a complex scientific topic in 2 minutes or less? That was the challenge posed by the RCSB Protein Data Bank last spring to high school students across the nation. And the winning result is the video that you see above!

This year’s contest, which asked students to provide a molecular view of diabetes treatment and management, attracted 53 submissions from schools from coast to coast. The winning team—Andrew Ma, George Song, and Anirudh Srikanth—created their video as their final project for their advanced placement (AP) biology class at West Windsor-Plainsboro High School South, Princeton Junction, NJ.