Credit: National Institute of General Medical Sciences, NIH
Nelson Mandela said, “Education is the most powerful weapon which you can use to change the world.” At NIH’s National Institute of General Medical Sciences (NIGMS), we believe that educating future and current scientists from diverse backgrounds benefits the entire biomedical research enterprise, changing the world through advances in disease diagnosis, treatment, and prevention.
As the summer winds down and students and educators embark on a new school year, I thought I’d highlight some of our educational resources that complement science, technology, engineering, and math (STEM) curricula. I’d also like to draw your attention to training programs designed to inspire and support research careers.
STEM Programs and Resources from NIH
The NIGMS Science Education Partnership Awards (SEPAs) are resources that provide opportunities for pre-K-12 students from underserved communities to access STEM educational resources. It lets them aspire to careers in health research.
The SEPA grants in almost every state support innovative, research-based, science education programs, furthering NIGMS’ mission to ensure a strong and diverse research ecosystem. Resources generated through SEPAs are free, mapped to state and national teaching standards for STEM, and rigorously evaluated for effectiveness. These resources include mobile laboratories, health exhibits in museums and science centers, educational resources for students, and professional development for teachers.
One SEPA program at Purdue University College of Veterinary Medicine, West Lafayette, IN, pairs veterinarians from their nationwide “superhero” League of VetaHumanz with local schools or community centers that support underserved students. These professional veterinarians, also from diverse backgrounds, strive to help young students from underrepresented groups envision future careers caring for animals.
Another SEPA program at Baylor University, Waco, TX, is increasing access to chemistry labs for high schoolers with blindness. It uses a robotic reactor with enhanced safety features to eliminate many dangers of synthetic organic chemistry. Students with blindness can control the robot to conduct experiments in a similar fashion to their sighted counterparts. The robot is housed within an airtight, blast-proof glove box, and it can perform common chemistry operations such as weighing and dispensing solid or liquid reagents; delivering solvents; combining reagents with the solvents; and stirring, heating, or cooling the reaction mixtures.
As noted in the 2021 report from the White House’s Office of Science and Technology Policy, “equity and inclusion are fundamental prerequisites for making high-quality STEM education accessible to all Americans and will maximize the creative capacity of tomorrow’s workforce.” I believe this statement falls right in line with the spirit of SEPAs.
New NIH-Wide STEM Teaching Resources Website
To help educators find free science education content, we recently launched a STEM teachingresources website. It includes NIH-wide teaching materials as well as those from SEPA programs for grades K-12, categorized by different health and research topic areas.
The NIGMS free educational resource Pathways, designed for educators and aspiring scientists in grades 6-12, is one of many resources available through the STEM website. Each issue of Pathways provides information about basic biomedical science and research careers and includes a student magazine, teacher lesson plans, and interactives such as Kahoot! classroom quizzes. Our most recent vaccine science issue teaches students how COVID-19 vaccines work in the body and introduces them to scientists dedicated to vaccine research.
Programs for Early Career Scientists
While SEPA grants focus on future scientists (and their educators) in grades pre-K-12, NIGMS also has a robust research training portfolio for those at the undergraduate through postdoctoral and professional levels. These programs aim to enhance diversity by engaging and training scientists from diverse backgrounds early in their careers.
At the undergraduate level, programs like Maximizing Access to Research Careers (MARC) provide students from diverse backgrounds with mentorship and career development. We recently highlighted the MARC program at Vanderbilt University, Nashville, TN, on our Biomedical Beat blog showing the program’s impact on students.
At the other end of the spectrum, our Maximizing Opportunities for Scientific and Academic Independent Careers (MOSAIC) program helps promising postdoctoral researchers from diverse backgrounds transition into independent faculty careers. The MOSAIC scholars become part of a career development program to expand their professional networks and gain additional skills and mentoring through scientific societies. You can learn more about each of these impressive early career scientists on our MOSAIC Scholars webpages.
At NIGMS, we’re dedicated to increasing the diversity of the biomedical research workforce. Through STEM content and outreach, as well as scientist training resources, we focus on emphasizing diversity, equity, inclusion, and accessibility. This holds true with funding and programming for current scientists, and in the inspiration and training of future scientists.
Note: Dr. Lawrence Tabak, who performs the duties of the NIH Director, has asked the heads of NIH’s Institutes and Centers (ICs) to contribute occasional guest posts to the blog to highlight some of the interesting science that they support and conduct. This is the 15th in the series of NIH IC guest posts that will run until a new permanent NIH director is in place.
Credit: Scott Chimileski, Sylvie Laborde, Nicholas Lyons, Roberto Kolter, Harvard Medical School, Boston
Bacteria are single-celled organisms that are too small to see in detail without the aid of a microscope. So you might not think that zooming in on a batch of bacteria would provide the inspiration for a museum-worthy sculpture.
But, in fact, that’s exactly what you see in the image. Researchers grew in a lab dish Bacillus licheniformis, a usually benign bacterium from the soil that produces an enzyme used in laundry detergent. The bacteria self-organized into a sand dollar-like pattern to form a cohesive structure called a biofilm. The researchers then took a 3D scan of the living bacterial colony in the lab and used it to print this stainless steel sculpture at 12 times the dime-sized biofilm.
Bacteria are single-cell organisms that reproduce by dividing in half. Proteins within these cells organize themselves in a number of fascinating ways during this process, including a recently discovered mechanism that makes the mesmerizing pattern of waves, or oscillations, you see in this video. Produced when the protein MinE chases the protein MinD from one end of the cell to the other, such oscillations are thought to center the cell’s division machinery so that its two new “daughter cells” will be the same size.
To study these dynamic patterns in greater detail, Anthony Vecchiarelli purified MinD and MinE proteins from the bacterium Escherichia coli. Vecchiarelli, who at the time was a postdoc in Kiyoshi Mizuuchi’s intramural lab at NIH’s National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), labeled the proteins with fluorescent markers and placed them on a synthetic membrane, where their movements were then visualized by total internal reflection fluorescence microscopy. The proteins self-organized and generated dynamic spirals of waves: MinD (blue, left); MinE (red, right); and both MinD and MinE (purple, center) [1].
Credit: Oscar Ruiz and George Eisenhoffer, University of Texas MD Anderson Cancer Center, Houston
Zebrafish (Danio rerio) is a favorite model for studying development, in part because its transparent embryos make it possible to produce an ever-growing array of amazingly informative images. For one recent example, check out this Federation of American Societies for Experimental Biology’s 2016 BioArt winner, which shows the developing face of a 6-day-old zebrafish larva.
Yes, those downturned “lips” are indeed cells that will go on to become the fish’s mouth. But all is not quite what it appears: the two dark circles that look like eyes are actually developing nostrils. Both the nostrils and mouth express high levels of F-actin (green), a structural protein that helps orchestrate cell movement. Meanwhile, the two bulging areas on either side of the fish’s head, which are destined to become eyes and skin, express keratin (red).
Oscar Ruiz, who works in the lab of George Eisenhoffer at The University of Texas MD Anderson Cancer Center, Houston, used a confocal microscope to create this image. What was most innovative about his work was not the microscope itself, but how he prepared the sample for imaging. With traditional methods, researchers can only image the faces of zebrafish larvae from the side or the bottom. However, the Eisenhoffer lab has devised a new method of preparing fish larvae that makes it possible to image their faces head-on. This has enabled the team to visualize facial development at much higher resolution than was previously possible.
It’s not every day that an amateur guitar picker gets to play a duet with an internationally renowned classical cellist. But that was my thrill this week as I joined Yo-Yo Ma in a creative interpretation of the traditional song, “How Can I Keep from Singing?” Our short jam session capped off Mr. Ma’s appearance as this year’s J. Edward Rall Cultural Lecture.
The event, which counts The Dalai Lama, Maya Angelou, and Atul Gawande among its distinguished alumni, this year took the form of a conversation on the intersection of music and science—and earned a standing ovation from a packed house of researchers, patients, and staff here on the National Institutes of Health (NIH) campus in Bethesda, MD.