Skip to main content

head and neck cancer

Zachary Morris

Zachary Morris
Credit: Alan Leon

Zachary Morris has certainly done some memorable things. As a Rhodes Scholar, he once attended an evening reception at Buckingham Palace, played a game of pick-up football with former President Bill Clinton, and traveled to South Africa to take a Robben Island Prison tour, led by the late Nelson Mandela. But something the young radiation oncologist did during his medical residency could prove even more momentous. He received a special opportunity from the American Board of Radiology to join others in studying how to pair radiation therapy with the emerging cancer treatment strategy of immunotherapy.

Morris’s studies in animals showed that the two treatments have a unique synergy, generating a sustained tumor-specific immune response that’s more potent than either therapy alone. But getting this combination therapy just right to optimize its cancer-fighting abilities remains complicated. Morris, now a researcher and clinician at the University of Wisconsin School of Medicine and Public Health, Madison, has received a 2017 NIH Director’s Early Independence Award to look deeper into this promising approach. He and his collaborators will use what they learn to better inform their future early stage clinical trials of radio-immunotherapy starting with melanoma, head and neck cancers, and neuroblastoma.

(more…)

Posted In: Creative Minds, Health, Science

Tags: , , , , , , , , , , , , , , ,

One Comment

squamous cell carcinoma

Caption: Triple immunohistochemical stained oral squamous cell carcinoma: nuclei in brown, cytoplasm in red, and cytoplasmic membranes in blue green.
Credit: Alfredo A. Molinolo, Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, NIH

An exciting new era in cancer research is emerging, called precision oncology. It builds on decades of research establishing that cancers start with glitches in the genome, the cell’s instruction book. Researchers have now identified numerous ways that mutations in susceptible genes can drive the cancer process. Knowing where and how to look for them brings greater precision to diagnosing cancers and gives doctors key clues about which treatments might work and which ones won’t.

To build a firmer evidence base for precision oncology, more and more cancer genomes, from many different body sites, must be analyzed for clues about the drivers of the malignant process. That’s why it’s always exciting to see a new genomic analysis that adds substantially to our understanding of a common tumor. The latest to appear, published online at the journal Nature, comes from an NIH-supported study on the most common type of head and neck cancer, called squamous cell carcinoma. The technologically advanced analysis confirms that many previously suspected genes do indeed play a role in head and neck cancer. But that’s not all. The new data also identify several previously unknown subtypes of this cancer. The first descriptions of the abnormal molecular wiring in these subtypes are outlined, suggesting possible strategies  to neutralize or destroy the cancer cells. That’s potentially good news to help guide and inform the treatment of the estimated 55,000 Americans who are diagnosed with a head and neck cancer each year.

(more…)

Posted In: Health, Science

Tags: , , , , , , , ,

Cancer types floating over a cell with unraveling DNA

NIH-funded researchers analyzed the DNA of these cancers.

Cancer is a disease of the genome. It arises when genes involved in promoting or suppressing cell growth sustain mutations that disturb the normal stop and go signals.  There are more than 100 different types of cancer, most of which derive their names and current treatment based on their tissue of origin—breast, colon, or brain, for example. But because of advances in DNA sequencing and analysis, that soon may be about to change.

Using data generated through The Cancer Genome Atlas, NIH-funded researchers recently compared the genomic fingerprints of tumor samples from nearly 3,300 patients with 12 types of cancer: acute myeloid leukemia, bladder, brain (glioblastoma multiforme), breast, colon, endometrial, head and neck, kidney, lung (adenocarcinoma and squamous cell carcinoma), ovarian, and rectal. Confirming but greatly extending what smaller studies have shown, the researchers discovered that even when cancers originate from vastly different tissues, they can show similar features at the DNA level

(more…)

Posted In: Science

Tags: , , , , , , , , , , , , , , , , , , , , , , , , , , ,