Skip to main content


A Look Back at Science’s 2022 Breakthroughs

Posted on by

RSV vaccines near the finish. Virus fingered as cause of multiple sclerosis. AI gets creative.
Credit: National Institute of Allergy and Infectious Diseases, NIH; Centers for Disease Control and Prevention; Shutterstock/tobe24, Midjourney Inc.

Happy New Year! I hope everyone finished 2022 with plenty to celebrate, whether it was completing a degree or certification, earning a promotion, attaining a physical fitness goal, or publishing a hard-fought scientific discovery.

If the latter, you are in good company. Last year produced some dazzling discoveries, and the news and editorial staff at the journal Science kept a watchful eye on the most high-impact advances of 2022. In December, the journal released its list of the top 10 advances across the sciences, from astronomy to zoology. In case you missed it, Science selected NASA’s James Webb Space Telescope (JWST) as the 2022 Breakthrough of the Year [1].

This unique space telescope took 20 years to complete, but it has turned out to be time well spent. Positioned 1.5-million-kilometers from Earth, the JWST and its unprecedented high-resolution images of space have unveiled the universe anew for astronomers and wowed millions across the globe checking in online. The telescope’s image stream, beyond its sheer beauty, will advance study of the early Universe, allowing astronomers to discover distant galaxies, explore the early formation of stars, and investigate the possibility of life on other planets.

While the biomedical sciences didn’t take home the top prize, they were well represented among Science’s runner-up breakthroughs. Some of these biomedical top contenders also have benefited, directly or indirectly, from NIH efforts and support. Let’s take a look:

RSV vaccines nearing the finish line: It’s been one of those challenging research marathons. But scientists last year started down the homestretch with the first safe-and-effective vaccine for respiratory syncytial virus (RSV), a leading cause of severe respiratory illness in the very young and the old.

In August, the company Pfizer presented evidence that its experimental RSV vaccine candidate offered protection for those age 60 and up. Later, they showed that the same vaccine, when administered to pregnant women, helped to protect their infants against RSV for six months after birth. Meanwhile, in October, the company GSK announced encouraging results from its late-stage phase III trial of an RSV vaccine in older adults.

As Science noted, the latest clinical progress also shows the power of basic science. For example, researchers have been working with chemically inactivated versions of the virus to develop the vaccine. But these versions have a key viral surface protein that changes its shape after fusing with a cell to start an infection. In this configuration, the protein elicits only weak levels of needed protective antibodies.

Back in 2013, Barney Graham, then with NIH’s National Institute of Allergy and Infectious Diseases (NIAID), and colleagues, solved the problem [2]. Graham’s NIH team discovered a way to lock the protein into its original prefusion state, which the immune system can better detect. This triggers higher levels of potent antibodies, and the discovery kept the science—and the marathon—moving forward.

These latest clinical advances come as RSV and other respiratory viruses, including SARS-CoV-2, the cause of COVID-19, are sending an alarming number of young children to the hospital. The hope is that researchers will cross the finish line this year or next, and we’ll have the first approved RSV vaccine.

Virus fingered as cause of multiple sclerosis: Researchers have long thought that multiple sclerosis, or MS, has a viral cause. Pointing to the right virus with the required high degree of certainty has been the challenge, slowing progress on the treatment front for those in need. As published in Science last January, Alberto Ascherio, Harvard T.H. Chan School of Public Health, Boston, and colleagues produced the strongest evidence yet that MS is caused by the Epstein-Barr virus (EBV), a herpesvirus also known for causing infectious mononucleosis [3].

The link between EBV and MS had long been suspected. But it was difficult to confirm because EBV infections are so widespread, and MS is so disproportionately rare. In the recent study, the NIH-supported researchers collected blood samples every other year from more than 10 million young adults in the U.S. military, including nearly 1,000 who were diagnosed with MS during their service. The evidence showed that the risk of an MS diagnosis increased 32-fold after EBV infection, but it held steady following infection with any other virus. Levels in blood serum of a biomarker for MS neurodegeneration also went up only after an EBV infection, suggesting that the viral illness is a leading cause for MS.

Further evidence came last year from a discovery published in the journal Nature by William Robinson, Stanford University School of Medicine, Stanford, CA, and colleagues. The NIH-supported team found a close resemblance between an EBV protein and one made in the healthy brain and spinal cord [4]. The findings suggest an EBV infection may produce antibodies that mistakenly attack the protective sheath surrounding our nerve cells. Indeed, the study showed that up to one in four people with MS had antibodies that bind both proteins.

This groundbreaking research suggests that an EBV vaccine and/or antiviral drugs that thwart this infection might ultimately prevent or perhaps even cure MS. Of note, NIAID launched last May an early-stage clinical trial for an experimental EBV vaccine at the NIH Clinical Center, Bethesda, MD.

AI Gets Creative: Science’s 2021 Breakthrough of the Year was AI-powered predictions of protein structure. In 2022, AI returned to take another well-deserved bow. This time, Science singled out AI’s now rapidly accelerating entry into once uniquely human attributes, such as artistic expression and scientific discovery.

On the scientific discovery side, Science singled out AI’s continued progress in getting creative with the design of novel proteins for vaccines and myriad other uses. One technique, called “hallucination,” generates new proteins from scratch. Researchers input random amino acid sequences into the computer, and it randomly and continuously mutates them into sequences that other AI tools are confident will fold into stable proteins. This greatly simplifies the process of protein design and frees researchers to focus their efforts on creating a protein with a desired function.

AI research now engages scientists around world, including hundreds of NIH grantees. Taking a broader view of AI, NIH recently launched the Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) Program. It will help to create greater diversity within the field, which is a must. A lack of diversity could perpetuate harmful biases in how AI is used, how algorithms are developed and trained, and how findings are interpreted to avoid health disparities and inequities for underrepresented communities.

And there you have it, some of the 2022 breakthroughs from Science‘s news and editorial staff. Of course, the highlighted biomedical breakthroughs don’t capture the full picture of research progress. There were many other milestone papers published in 2022 that researchers worldwide will build upon in the months and years ahead to make further progress in their disciplines and, for some, draw the attention of Science’s news and editorial staff. Here’s to another productive year in biomedical research, which the blog will continue to feature and share with you as it unfolds in 2023.


[1] 2022 Breakthrough of the Year. Science. Dec 15, 2022.

[2] Structure of RSV fusion glycoprotein trimer bound to a prefusion-specific neutralizing antibody. McLellan JS, Chen M, Leung S, Kwong PD, Graham BS, et al. Science. 2013 May 31;340(6136):1113-1117.

[3] Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis. Bjornevik K, Cortese M, Healy BC, Kuhle J, Mina MJ, Leng Y, Elledge SJ, Niebuhr DW, Scher AI, Munger KL, Ascherio A. Science. 2022 Jan 21;375(6578):296-301.

[4] Clonally expanded B cells in multiple sclerosis bind EBV EBNA1 and GlialCAM. Lanz TV, Brewer RC, Steinman L, Robinson WH, et al. Nature. 2022 Mar;603(7900):321-327.


Respiratory Syncytial Virus (RSV) (National Institute of Allergy and Infectious Diseases/NIH)

Multiple Sclerosis (National Institute of Neurological Disorders and Stroke/NIH)

Barney Graham (Morehouse School of Medicine, Atlanta)

Alberto Ascherio (Harvard T.H. Chan School of Public Health, Boston)

Robinson Lab (Stanford Medicine, Stanford, CA)

Artificial Intelligence/Machine Learning Consortium to Advance Health Equity and Researcher Diversity (AIM-AHEAD) Program (NIH)

James Webb Space Telescope (Goddard Space Flight Center/NASA, Greenbelt, MD)

Summer Reading Suggestions from Scientists: Robert Horvitz

Posted on by

Summer ReadingTwo Science Selections: 

Horace Freeland Judson, Eighth Day of Creation. A comprehensive history of the origins and early science of the field of modern molecular biology, written by historian Horace Freeland Judson based on personal interviews with those who drove the revolution in biology. First and foremost are the science—DNA, RNA and protein, the genetic code, and gene regulation—and the scientific process—the seed ideas, the “aha” insights and the brilliant and elegant experiments. But this book is also the story of scientists in the process of discovery and of how the science that emerged was at least as much a consequence of the personalities as of the experimental skills of those involved. Fascinating, engaging, and fun—I’ve recommended this book to many, scientist and non-scientist alike.

Georgina Ferry, Dorothy Hodgkin. A superb biography of one of modern science’s most exceptional and distinguished pioneers. Awarded the Nobel Prize in Chemistry in 1964 for determining the crystal structures of penicillin and vitamin B12, Dorothy Crowfoot Hodgkin faced repeated challenges as a woman attempting to study and then pursue a career in chemistry in the 1930s and 1940s in England. Hodgkin is only one of four women ever awarded the Nobel Prize in Chemistry; the others were Marie Curie (1911); her daughter Irene Joliot-Curie (1935); and Ada Yonath (2009). Once recognized, Hodgkin worked hard to combat social inequalities and was president for more than a decade of Pugwash, an international organization founded by Bertrand Russell and dedicated to preventing war. Hodgkin has been a role model for many, although she disagreed rather strongly with the political views and actions of her most famous student, Margaret Thatcher.

Personal Connection: 

George Klein, The Atheist and the Holy City. This book was a gift to me from George Klein, a Hungarian-Swedish tumor biologist and virologist at the Karolinska Institute in Stockholm. George and his wife Eva are best known in biological circles for their pioneering discovery of the role of the Epstein-Barr virus in Burkitt’s lymphoma and other neoplasms. This book, one of many George has written, is a compilation of essays that focus on science, but incorporate history, religion and philosophy. Its sections are entitled “The Wisdom and Folly of Scientists,” “Journeys,” “Viruses and Cancer” and “The Human Condition,” and collectively touch upon topics as diverse as DNA hybridization, the discovery of Rous sarcoma virus, and the life cycle of Schistosoma mansoni, as well as the Nazi death camps, scientific creativity, and the conviction that God is an example of man’s wishful thinking. Thought-provoking and uplifting, this book is a story of science and much more. A must read for all.Line

Bob Horvitz

Robert Horvitz
Credit: Aynsley Floyd/ AP Images for HHMI

Robert Horvitz, Ph.D. is the David H. Koch Professor of Biology at the Massachusetts Institute of Technology, and a member of the MIT McGovern Institute for Brain Research and the MIT Koch Institute for Integrative Cancer Research. Dr. Horvitz is co-winner of the 2002 Nobel Prize in Physiology or Medicine for discoveries concerning genetic regulation of organ development and programmed cell death.