Skip to main content


New Target for Cancer Immunotherapy: Exosomes

Posted on by

It was once a central tenet of biology that RNA molecules did their work inside the cell. But it’s now clear that RNA molecules are also active outside the cell, with potentially major implications for our health. To learn more about these unrecognized roles, the NIH Common Fund has launched the Extracellular RNA (exRNA) Communication Program.

This month, members of this research consortium described their latest progress in unraveling the secrets of exRNA in a group of 18 papers in the Cell family of journals. And it’s not just RNA that the consortium is studying, it’s also proteins. Among the many exciting results just published is the serendipitous discovery that proteins carried inside tiny, bubble-like vesicles, called exosomes, may influence a cancer’s response to immunotherapy [1]. The work sheds light on why certain cancers are resistant to immunotherapy and points to new strategies for unleashing the immune system in the fight against cancer.

The new findings center on a type of immunotherapy drugs known as checkpoint inhibitors. They are monoclonal antibodies produced by industry that can boost the immune system’s ability to attack and treat cancer.

One of those antibodies specifically targets a protein, called PD-1, on the surface of certain immune cells. When PD-1 binds a similarly named protein, called PD-L1, on the surface of another cell, the interaction prevents immune cells from attacking. Some tumors seem to have learned this and load up on PD-L1 to evade the immune system.

That’s where checkpoint inhibitors come in. By blocking the interaction between PD-1 and PD-L1, the treatment removes a key check on the immune system, allowing certain immune cells to wake up and attack the tumor.

Checkpoint inhibitors work better in some cancer types than in others. In melanoma, for example, up to about 30 percent of patients respond to checkpoint inhibitor therapy. But in prostate cancer, response rates are in the single digits.

Researchers led by Robert Blelloch, a member of the exRNA consortium and a scientist at the University of California, San Francisco, wanted to know why. He and his team looked for clues in RNA within the cells taken from immunotherapy-resistant prostate cancers.

As published in Cell, the researchers got their first hint of something biologically intriguing in an apparent discrepancy in their data. As they expected from prior work, PD-L1 protein was present in the treatment-resistant cancers. But the PD-L1 messenger RNAs (mRNA), which serve as templates for producing the protein, told an unexpected story. The resistant cancer cells made far more PD-L1 mRNAs than needed to produce the modest levels of PD-L1 proteins detected inside the cells.

Where was the missing PD-L1? Blelloch’s team found it in exosomes. The cancer cells were packaging large quantities of the protein inside exosomes and secreting them out of the cell to other parts of the body.

In additional studies with a mouse model of prostate cancer, the researchers found that those PD-L1-packed exosomes travel through the blood and lymphatic systems to lymph nodes, the sites where immune cells become activated. Once there, PD-L1-laden exosomes put the immune system to sleep, preventing certain key cells from locating and attacking the cancer, including the primary tumor and places where it may have spread.

In important follow up studies, the researchers edited two genes in cancer cells to prevent them from producing exosomes. And, in the absence of exosomes, the cells no longer formed tumors. Importantly, both edited and unedited cells still produced PD-L1, but only those that exported PD-L1 in exosomes disarmed the immune system. Studies in a mouse model of immunotherapy-resistant colorectal cancer yielded similar results.

The new evidence suggests that blocking the release of PD-L1 in exosomes, even temporarily, might allow the immune system to launch a successful and sustained attack against a cancer.

Blelloch notes that many intriguing questions remain. For example, it’s not yet clear why antibodies that target PD-L1 on cancer cells don’t disable PD-L1 found in exosomes. The good news is that the new findings suggest it may be possible to find small molecules that do target PD-L1-packed exosomes, unleashing the immune system against cancers that don’t respond to existing checkpoint inhibitors. In fact, Blelloch’s team is already screening for small molecules that might fit the bill.

Since its launch about five years ago, the exRNA Communication Program has published an impressive 480 peer-reviewed papers, including the latest work in the Cell family of journals. I’d encourage readers to click on some of the other excellent work. I hear that another batch of papers will be published later this year.


[1] Suppression of exosomal PD-L induces systemic anti-tumor immunity and memory. Poggio M, Hu T, Pai CC, Chu B, Belair CD, Chang A, Montabana E, Lang UE, Fu Q, Fong L, Blelloch R. Cell. 2019 Apr 4;177(2):414-427.


Video: Unlocking the Mysteries of RNA Communication (Common Fund/NIH)

Immunotherapy to Treat Cancer (National Cancer Institute/NIH)

Blelloch Lab (University of California, San Francisco)

NIH Support: Common Fund; National Cancer Institute; National Center for Advancing Translational Sciences; National Heart, Lung, and Blood Institute; National Institute on Drug Abuse

Watching Cancer Cells Play Ball

Posted on by

Credit: Ning Wang, University of Illinois at Urbana-Champaign

As tumor cells divide and grow, they push, pull, and squeeze one another. While scientists have suspected those mechanical stresses may play important roles in cancer, it’s been tough to figure out how. That’s in large part because there hadn’t been a good way to measure those forces within a tissue. Now, there is.

As described in Nature Communications, an NIH-funded research team has developed a technique for measuring those subtle mechanical forces in cancer and also during development [1]. Their ingenious approach is called the elastic round microgel (ERMG) method. It relies on round elastic microspheres—similar to miniature basketballs, only filled with fluorescent nanoparticles in place of air. In the time-lapse video above, you see growing and dividing melanoma cancer cells as they squeeze and spin one of those cell-sized “balls” over the course of 24 hours.

Optimizing Radio-Immunotherapy for Cancer

Posted on by

Zachary Morris

Zachary Morris
Credit: Alan Leon

Zachary Morris has certainly done some memorable things. As a Rhodes Scholar, he once attended an evening reception at Buckingham Palace, played a game of pick-up football with former President Bill Clinton, and traveled to South Africa to take a Robben Island Prison tour, led by the late Nelson Mandela. But something the young radiation oncologist did during his medical residency could prove even more momentous. He received a special opportunity from the American Board of Radiology to join others in studying how to pair radiation therapy with the emerging cancer treatment strategy of immunotherapy.

Morris’s studies in animals showed that the two treatments have a unique synergy, generating a sustained tumor-specific immune response that’s more potent than either therapy alone. But getting this combination therapy just right to optimize its cancer-fighting abilities remains complicated. Morris, now a researcher and clinician at the University of Wisconsin School of Medicine and Public Health, Madison, has received a 2017 NIH Director’s Early Independence Award to look deeper into this promising approach. He and his collaborators will use what they learn to better inform their future early stage clinical trials of radio-immunotherapy starting with melanoma, head and neck cancers, and neuroblastoma.

Creative Minds: Applying CRISPR Technology to Cancer Drug Resistance

Posted on by

Patrick Hsu

Patrick Hsu

As a child, Patrick Hsu once settled a disagreement with his mother over antibacterial wipes by testing them in controlled experiments in the kitchen. When the family moved to Palo Alto, CA, instead of trying out for the football team or asking to borrow the family car like other high school kids might have done, Hsu went knocking on doors of scientists at Stanford University. He found his way into a neuroscience lab, where he gained experience with the fundamental tools of biology and a fascination for understanding how the brain works. But Hsu would soon become impatient with the tools that were available to ask some of the big questions he wanted to study.

As a Salk Helmsley Fellow and principal investigator at the Salk Institute for Biological Studies, La Jolla, CA, Hsu now works at the intersection of bioengineering, genomics, and neuroscience with a DNA editing tool called CRISPR/Cas9 that is revolutionizing the way scientists can ask and answer those big questions. (This blog has previously featured several examples of how this technology is revolutionizing biomedical research.) Hsu has received a 2015 NIH Director’s Early Independence award to adapt CRISPR/Cas9 technology so its use can be extended to that other critically important information-containing nucleic acid—RNA.Specifically, Hsu aims to develop ways to use this new tool to examine the role of a certain type of RNA in cancer drug resistance.

Precision Oncology: Creating a Genomic Guide for Melanoma Therapy

Posted on by

Melanoma cell

Caption: Human malignant melanoma cell viewed through a fluorescent, laser-scanning confocal microscope. Invasive structures involved in metastasis appear as greenish-yellow dots, while actin (green) and vinculin (red) are components of the cell’s cytoskeleton.
Credit: Vira V. Artym, National Institute of Dental and Craniofacial Research, NIH

It’s still the case in most medical care systems that cancers are classified mainly by the type of tissue or part of the body in which they arose—lung, brain, breast, colon, pancreas, and so on. But a radical change is underway. Thanks to advances in scientific knowledge and DNA sequencing technology, researchers are identifying the molecular fingerprints of various cancers and using them to divide cancer’s once-broad categories into far more precise types and subtypes. They are also discovering that cancers that arise in totally different parts of the body can sometimes have a lot in common. Not only can molecular analysis refine diagnosis and provide new insights into what’s driving the growth of a specific tumor, it may also point to the treatment strategy with the greatest chance of helping a particular patient.

The latest cancer to undergo such rigorous, comprehensive molecular analysis is malignant melanoma. While melanoma can rarely arise in the eye and a few other parts of the body, this report focused on the more familiar “cutaneous melanoma,” a deadly and increasingly common form of skin cancer [1].  Reporting in the journal Cell [2], The Cancer Genome Atlas (TCGA) Network says it has identified four distinct molecular subtypes of melanoma. In addition, the NIH-funded network identified an immune signature that spans all four subtypes. Together, these achievements establish a much-needed framework that may guide decisions about which targeted drug, immunotherapy, or combination of therapies to try in an individual with melanoma.

Next Page